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Préface de Christian Queinnec
Professeur émérite à l’Université Pierre et
Marie Curie

« Pourquoi l’informatique est-elle si compliquée ? » J’entends, je
lis, souvent, cette question. Elle dénote à la fois une incompréhen-
sion de ce que recouvre réellement l’informatique (manipuler une
feuille de calcul dans un tableur ressortit-il à l’informatique ?), un
effroi devant une révélation a priori déplaisante (l’informatique est
complexe) enfin, un découragement devant l’effort supposé immense
qu’il faudrait déployer pour dominer cette science.

Si l’on reprend les termes de cette question en les adaptant aux
mathématiques, son inanité saute aux yeux car qui s’exclamerait
« pourquoi les mathématiques sont-elles si compliquées ? ». Il est
de notoriété publique que les mathématiques sont compliquées : un
long apprentissage, comptant de nombreuses années d’étude et ac-
compagné d’un discours approprié, nous en ont finalement persua-
dés. Tapoter une calculette, nous en sommes sûrs, ne s’apparente
pas à faire des mathématiques et se tromper dans les touches n’est
pas vécu comme une insuffisance en mathématiques.

Reprenons encore les termes pour les adapter à la mécanique,
« pourquoi la mécanique est-elle si compliquée ? » pourrait s’excla-
mer un automobiliste immobilisé le long d’une autoroute. Il a encore
(pour quelques années seulement) la possibilité d’ouvrir le capot de
sa voiture et de contempler la belle ordonnance de fils, de tuyaux et
de pièces métalliques qui autrefois fonctionnaient lorsqu’il mettait
le contact. Mais, fort heureusement pour lui, existent des garagistes
et des mécaniciens qui pourront remettre en état sa voiture. Notre
automobiliste n’aura plus que le goût amer de l’argent dépensé sans
savoir pourquoi cela ne marchait plus ni pourquoi cela re-marche.
Notons que, dans ce cas, recourir à un professeur d’université en
mécanique n’a que peu de chances d’être fructueux : l’écart entre la
science mécanique et la technique étant par trop grand.
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Conduire n’est pas « faire de la mécanique » pas plus que mettre
en gras un titre n’est « faire de l’informatique ». En revanche, dé-
celer un bruit bizarre en roulant et l’attribuer aux pneus ou au
moteur, à la direction ou au freinage, aide le diagnostic du méca-
nicien. Déceler si un dysfonctionnement provient de l’affichage ou
du réseau, d’un disque ou de l’ordonnancement facilite, de même,
le diagnostic. Encore faut-il, tout comme en mécanique, connaître
les grandes fonctions et leurs relations, savoir ouvrir le capot et
nommer les éléments découverts. C’est ce but que sert l’ouvrage de
Laurent Bloch.

L’informatique ne se réduit pas à un ordinateur, ni même aux lo-
giciels qui l’équipent. Un ordinateur a une structure physique (unité
centrale, périphériques, etc.), il est animé par un système d’exploi-
tation qui, lui même, est structuré (ordonnancement, système de fi-
chiers, réseaux, etc.) et sert de support à de multiples applications.
Cette structure et son histoire, la lente maturation des concepts et
leur évolution sous la pression des connaissances, des désirs et de
la mercatique sont excellemment narrées dans ce livre.

Ce livre est excellent et constitue une remarquable introduc-
tion à l’informatique, science de l’abstrait, par le biais d’un de
ses produits les plus immatériels mais des plus répandus : les sys-
tèmes d’exploitation. J’en recommande la lecture à tout utilisateur
conscient et curieux car sa future liberté, en tant que simple utili-
sateur de l’informatique, dépend en grande partie de sa capacité à
comprendre les enjeux des batailles politiques qui, en ce moment,
font rage. Et si le lecteur de cette préface se demande pourquoi la
liberté intervient dans ce qui n’est qu’une matière technique, nous
l’invitons derechef à se plonger dans cet ouvrage.



Avant-propos

Depuis que l’ordinateur a investi la vie quotidienne, chacun dé-
couvre son compagnon invisible, immatériel, omniprésent et tyran-
nique, le système d’exploitation, dont les exemples les mieux connus
par leur nom sont Android, Windows ou Linux ; c’est un logiciel des-
tiné à piloter et coordonner les différents éléments constitutifs d’un
ordinateur (ou d’un téléphone, c’est la même chose) et à en faciliter
l’usage par un être humain. Ce logiciel a donc deux faces : une que
voit l’utilisateur, auquel il présente sur un écran des images qui sont
des métaphores des objets techniques qui agissent en coulisse, et à
qui il permet d’agir sur ces objets par l’intermédiaire de la souris et
du clavier, tandis que l’autre face, de loin la plus complexe, mais in-
visible, assure la mise en œuvre cohérente et efficace des dispositifs
techniques internes de la machine, ainsi que les interactions avec le
réseau, les appareils de mémoire externe, les micro et haut-parleurs,
etc.

S’il existe des ouvrages de vulgarisation pour expliquer le fonc-
tionnement des ordinateurs, leur lecture est souvent frustrante
parce qu’elle se limite au matériel, dont le comportement observable
est en fait une représentation médiatisée par le système d’exploita-
tion. Si l’utilisateur plus ou moins consentant d’un ordinateur veut
comprendre ce qui se passe sur son écran c’est en fait le système
d’exploitation qu’il faut expliquer. C’est un des objectifs de ce livre.

Pour introduire le lecteur dans l’univers des systèmes d’exploi-
tation, le présent ouvrage emprunte un itinéraire génétique et his-
torique qui part des problèmes qu’ont voulu résoudre les pionniers
des années 1950 pour parcourir les grands domaines que doit gé-
rer un système : les processus, la mémoire, le temps, la persistance
des données, les échanges avec l’extérieur, la sécurité, enfin l’inter-
face personne-ordinateur, la partie visible du système à quoi beau-
coup croient qu’il se réduit. Cette visite historique se justifie par
la constatation que, derrière une extrême diversité extérieure des
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réalisations proposées à l’utilisateur, les mécanismes choisis pour
réaliser le cœur du système sont d’une grande similitude.

Il est difficile de parler de système d’exploitation sans parler de
réseau, et il en sera question.

Alors, l’ordinateur a-t-il une âme ? Au sens religieux, certes non,
mais dans l’acception étymologique de l’animus, oui, l’ordinateur
est bien animé par le système d’exploitation sans lequel il ne serait
qu’un amas de ferraille.

Complexité des systèmes d’exploitation
Le système d’exploitation est sans doute un des objets les plus

complexes créé par le cerveau humain. C’est un logiciel, soit une
entité abstraite constituée d’idées. Essayons d’estimer la quantité
d’idées significatives contenues dans un tel logiciel : Jean-Raymond
Abrial[3], co-auteur du logiciel de pilotage de la ligne de métro
automatique numéro 14 du réseau parisien, a trouvé pour 100 000
lignes de code 30 000 obligations de preuve, la plupart satisfaites
automatiquement par le système de spécification et de programma-
tion[31] ; il resta 2 500 démonstrations rétives à l’automatisation,
à effectuer par les ingénieurs, ce qui demanda plusieurs mois de
travail[13]. Il est possible de dire que ce logiciel comporte 30 000
idées, dont 2 500 idées difficiles, ou originales, pour 100 000 lignes
de texte, soit une densité d’une idée significative pour 40 lignes.
Sachant que la taille du noyau du système d’exploitation Linux est
de l’ordre de 20 000 000 de lignes, si nous appliquons ce ratio, il
comporte 500 000 idées significatives. Évidemment nous supposons
ici que les complexités algorithmiques des ces deux systèmes soient
du même ordre, ce qui semble plausible, mais je n’entrerai pas dans
ces considérations.

Un ingénieur spécialiste de l’intégration de grands systèmes
industriels m’a donné les indicateurs suivants, pour lesquels, par
exemple, le type boulon est un objet, et chaque boulon particulier
de ce type une instance de l’objet boulon. Airbus A380 : 150 000
objets, 1 200 000 instances. Une voiture : 6 000 objets, 15 000 ins-
tances. N’accordons pas à ces chiffres plus d’importance qu’il ne
convient, ils sont de toute façon approximatifs et contestables, mais
leur comparaison n’est pas déraisonnable. Ajoutons que les avions
et voitures contemporains comportent au moins quelques dizaines
de systèmes d’exploitation à bord.



5

Une autre façon de voir les choses, c’est le volume de la docu-
mentation. Au début des années 1970 je suis entré dans l’équipe
système centrale de l’Insee, à l’époque équipée d’ordinateurs IBM
360. En tant que bizuth je fus chargé de gérer la documentation
du système, à l’époque entièrement sur papier et microfiches, avec
comme avantage un grand bureau à cause de la taille nécessaire de
la bibliothèque : une trentaine de mètres linéaires. Chaque semaine
je recevais une vingtaine de mises à jour, sous la forme de feuilles
destinées à remplacer dans chaque brochure les pages périmées. Les
gens plus jeunes qui n’ont connu que le Web et les moteurs de re-
cherche auront du mal à mesurer le progrès depuis cette époque,
mais l’avantage de ce système manuel fastidieux était que j’avais
une connaissance quasiment physique du système et de l’évolution
plus ou moins rapide de ses différents composants.

Il faut comprendre quand même « comment ça
marche »

Le système d’exploitation joue un rôle si crucial dans le monde
contemporain, où il manifeste une telle ubiquité, qu’il est hors de
question, pour tout humain responsable de lui-même et de la so-
ciété, de tout ignorer de son fonctionnement. Lors de la précédente
révolution industrielle, mon père et mon grand-père, pourtant de
formation purement littéraire, se donnaient la peine de comprendre
la machine à vapeur, la centrale hydro-électrique, le four Besse-
mer, le moteur à combustion interne et j’en passe, je suis d’autant
plus déçu de voir qu’aujourd’hui des gens qui occupent des postes
de responsabilité dans les entreprises ou dans l’administration se
piquent de ne rien comprendre à l’informatique. Alors j’ai écrit ce
livre pour essayer de combler ce gouffre d’ignorance, ou tout au
moins y contribuer.

Aujourd’hui, il n’y a guère que trois familles de systèmes d’ex-
ploitation : z/OS pour les mainframes IBM, Windows de Microsoft
(soit dit en passant héritier adultérin de VMS de Digital Equip-
ment, par débauchage de son concepteur principal David Cutler),
et Unix. On notera que la famille Unix englobe Linux, macOS,
iOS, Android, FreeBSD, NetBSD, OpenBSD et quelques autres. La
conception de z/OS remonte à 1964 (alors sous le nom OS/360),
celle de VMS-Windows à 1977, celle d’Unix à 1969. Certes, chacun
de ces systèmes a connu d’innombrables perfectionnements depuis
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le milieu des années 1960 : mémoire virtuelle, extension de l’espace
d’adressage, interfaces graphiques, réseau, etc. Mais la philosophie
générale de chacun est très stable. Il y a quarante ans que je n’ai pas
touché à un système OS/360, mais lorsque j’ai écouté il y a quelques
mois un exposé sur la sécurité de z/OS je me suis retrouvé dans un
univers extrêmement familier.

Pourquoi le monde des systèmes d’exploitation
est-il si stable ?

L’écriture de mon livre et sa mise à jour continue depuis la pre-
mière édition de 2003 ont été grandement facilitées par la grande
stabilité technique des systèmes d’exploitation pendant cette pé-
riode, et par leur regroupement en trois familles. Cette stabilité
n’avait d’égale que celle de l’architecture des ordinateurs : aujour-
d’hui il y a trois familles de processeurs, Intel x86, ARM et Po-
werPC, avec des marchés de niche, par exemple MIPS pour certains
matériels réseau et parce que les industriels chinois en ont acheté
la licence il y a longtemps.

Il n’en allait pas de même lors des périodes précédentes, et cette
situation n’est pas forcément durable.

Si l’on pense aux décennies 1960-1970-1980, il y avait une va-
riété considérable tant des architectures matérielles que des sys-
tèmes d’exploitation. Il suffit pour s’en convaincre de lire l’excellent
ouvrage collectif Systèmes d’exploitation des ordinateurs publié en
1975 par une équipe baptisée CROCUS : c’est aujourd’hui un livre
d’histoire passionnant, avec aussi beaucoup d’idées encore d’actua-
lité, et de précieuses mises au point conceptuelles. Surtout au début,
cette prolifération était due au moins en partie aux tâtonnements
d’une technologie débutante, mais dès les années 1970 pratiquement
toutes les solutions en usage aujourd’hui existent déjà : interrup-
tions, multiprogrammation, mémoire virtuelle, machines virtuelles,
réseaux à commutation de paquets, etc. La dernière vraie révolu-
tion architecturale remonte à la toute fin des années 1970, avec les
processeurs RISC (Reduced Instruction Set Computer, cf. p. 320),
qui vont dominer les années 1980 et 1990 (ils reviennent aujourd’hui
au premier plan grâce aux téléphones, tous équipés de processeurs
d’architecture ARM, cf. p. 324).

Pendant toute cette période, la recherche de puissance va stimu-
ler la création d’architectures originales, SIMD (Single Instruction
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Multiple Data) et MIMD (Multiple Instructions Multiple Data),
destinées à dépasser les limites de l’architecture de von Neumann
en permettant à l’ordinateur de faire plusieurs choses à la fois 1.
SIMD survit dans les cartes graphiques (GPU), de plus en plus
utilisées pour tout autre chose que le graphisme, notamment pour
les calculs d’algèbre linéaire. Les réalisations MIMD les plus spec-
taculaires furent les Connection Machines de Thinking Machines
Corporation (on notera la modestie de la raison sociale).

Le défaut des architectures SIMD et surtout MIMD, c’est que
leur programmation est compliquée, que ce soit pour le système
d’exploitation ou pour les applications, elle remet en cause les
connaissances des programmeurs. Alors, pendant les cruelles années
1990, où l’essor des microprocesseurs devint irrésistible, s’il fallait
deux ou trois ans pour arriver à programmer sa Connection Ma-
chine, pendant ce délai les progrès des microprocesseurs standard
avaient permis d’obtenir les mêmes performances par les méthodes
classiques enseignées dans toutes les écoles. D’où la disparition de
Thinking Machines Corporation (il faut dire que comprendre l’or-
ganisation physique de ces machines était déjà un vrai casse-tête).

Quant aux processeurs RISC, tels que MIPS, PA-RISC, Sparc,
Alpha, Power, etc., bien plus élégants et plus simples que l’odieux
Intel x86 (d’architecture CISC, Complex Instruction Set Compu-
ter), ils furent victimes des jeux vidéo et de la bureautique : dès
que l’ordinateur personnel devint un objet de grande consomma-
tion, la compatibilité avec les logiciels déjà possédés par les clients
devint un impératif inévitable. Heureusement vint le téléphone in-
formatisé, pour lequel la consommation électrique des processeurs
CISC était insupportable, ce qui mena à l’adoption des processeurs
RISC d’architecture ARM (cf. p. 324).

Cette stabilité est-elle durable ?
Cette concentration de l’offre de systèmes d’exploitation, qui

est en partie le fruit de la concentration de l’offre d’architec-
tures matérielles, est-elle durable ? Rien n’est moins sûr. L’ébranle-
ment des positions acquises risque de venir de l’industrie des semi-

1 Il ne m’échappe pas qu’à l’échelle microscopique un processeur moderne
effectue plusieurs opérations à la fois, mais à l’échelle macroscopique la sé-
mantique d’un traitement conforme à von Neumann est respectée.
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conducteurs, aujourd’hui à la croisée des chemins. Les investisse-
ments exigés par les technologies les plus récentes sont tellement
élevés (plusieurs dizaines de milliards de dollars pour une ligne de
production, et des milliards pour la recherche-développement en
amont) que plus aucun acteur nouveau ne peut entrer sur le mar-
ché, et que chaque nouvelle étape voit un ou plusieurs industriels
abandonner le terrain.

D’autre part, l’épaisseur du diélectrique des transistors des com-
posants les plus récents est de l’ordre d’une dizaine d’atomes, on
parle même de trois atomes dans les années à venir : on approche
d’une limite physique. De même, il y a déjà une dizaine d’années
que les industriels ont cessé d’augmenter la fréquence d’horloge,
qui reste inférieure à 4GHz, parce que la dissipation thermique et
la consommation électrique, déjà considérables, deviendraient in-
supportables.

Si la puissance du microprocesseur unitaire cesse de croître, d’où
peut venir l’amélioration des performances ? de la mise en œuvre
de procédés aptes à faire coopérer de multiples processeurs, ce qui
pourrait remettre au devant de la scène les technologies des an-
nées 1980, mentionnées ci-dessus, destinées à dépasser les limites de
l’architecture de von Neumann (SIMD, MIMD...). Pour tirer plei-
nement parti de telles architectures matérielles, il faudra innover en
système d’exploitation, et pour cela, peut-être, relire les articles des
années 1980 pour appliquer à l’échelle microscopique les solutions
parfois très audacieuses qu’ils préconisaient à l’échelle macrosco-
pique. On trouvera d’intéressantes perspectives sur les modèles de
calcul d’avenir sous la plume d’Anil Madhavapeddy et David J.
Scott (Unikernels : The Rise of the Virtual Library Operating Sys-
tem [82], cf. p. 347) ou sous celle de David Chisnall (C Is Not a
Low-level Language - Your computer is not a fast PDP-11 [30]).

Il faudrait penser aussi aux objets connectés, qui ont des carac-
téristiques bien particulières, mais de toute façon la recherche en
système d’exploitation a encore de beaux jours devant elle.

D’autres livres, d’autres auteurs
Je n’aurais garde de conclure cet avant-propos sans signaler la

richesse de la bibliographie relative aux systèmes d’exploitation. Le
sujet est tellement riche qu’il y a de multiples façons de l’abor-
der, et c’est tellement passionnant que je vous conseille de tout
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lire. Pour me limiter aux auteurs qui ont écrit en français, outre
le CROCUS [37] déjà mentionné, je citerai Samia Bouzefrane [21],
Sacha Krakowiak [70] et Patrick Cegielski [28]. Puisse leur lecture
vous procurer autant de plaisir qu’à moi.

Avertissement de l’édition 2018
La première édition de ce livre date de 2003, je me suis efforcé

de le mettre à jour au fil du temps et des innovations techniques,
l’exposé des principes fondamentaux, qui en est l’objet principal,
est toujours pertinent.

Vous pouvez adresser remarques et suggestions à l’auteur à
l’adresse lb@laurentbloch.org.

Ce texte est disponible en ligne sur le site de l’auteur :
https://laurentbloch.net/MySpip3/Systeme-et-reseau-histoire-et-technique
accompagné de textes complémentaires publiés régulièrement, sur
des sujets voisins.
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1.1 Mondanité des systèmes
Aujourd’hui chacun a entendu parler de Windows, peut-être

moins de macOS (le système du Macintosh), et chaque jour un
peu plus de Linux, grâce auquel l’auteur confectionne les lignes que
vous avez sous les yeux. Ces entités quotidiennes s’appellent des
systèmes d’exploitation. Bon gré mal gré, une proportion de plus
en plus grande des personnes actives dans toutes sortes de domaines
doivent acquérir une certaine familiarité avec celui qui anime leur
ordinateur afin de pouvoir faire leur travail, et cette acquisition
ne va pas sans perte de temps, agacement, colère, souffrance, mais
aussi quand même joie et découvertes émerveillées.

Le présent ouvrage se propose d’apporter, au gré d’un voyage
dans l’histoire de l’informatique, quelques éclaircissements sur les
systèmes d’exploitation à un lecteur qui ainsi devrait se sentir moins
désarmé face à eux, et de ce fait plus enclin à la sérénité face à ce
que, souvent, il pense être leurs caprices. Il présente quelques as-
pects de leur nature, de leur naissance et de leur histoire, et cherche
à éclairer, sous l’angle obtenu de ce point de vue, l’évolution et le
rôle dans notre société de l’informatique et des ordinateurs auxquels
elle est indissolublement liée.
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Ce livre est une simple introduction à la science des systèmes
d’exploitation, il s’adresse aussi au lecteur curieux d’histoire des
sciences, des techniques et plus généralement de la vie intellectuelle,
ainsi qu’au simple utilisateur d’ordinateur désireux de comprendre
un peu mieux l’origine des difficultés mais aussi, nous l’espérons, des
joies que lui procure cette extraordinaire machine. En fait, ce livre
pourra aussi éclairer l’informaticien dont la spécialité n’est pas le
système d’exploitation, au sens suivant : un livre destiné à de futurs
ingénieurs en système devra viser une couverture complète des ques-
tions abordées ; au chapitre consacré par exemple aux algorithmes
d’ordonnancement de processus, il devra décrire toutes les solutions
possibles en donnant les détails nécessaires à leur réalisation ; mon
propos ici est autre, il s’agit seulement de faire comprendre la pro-
blématique de ces algorithmes, en en exposant un, de préférence le
plus simple, et sans entrer dans les détails d’implémentation. Et si
le lecteur, passionné, veut en savoir plus, il trouvera dans la biblio-
graphie quelques références d’ouvrages sensiblement plus épais qui
devraient satisfaire sa curiosité.

D’excellents ouvrages accessibles à un public de non-spécialistes
ont déjà été consacrés à l’histoire de l’informatique ou des ordi-
nateurs ainsi qu’à la sociologie et à la psychologie de leur usage,
mais la question des systèmes d’exploitation y occupe une place
assez étroite. Ce n’est d’ailleurs pas anormal, puisque leur appa-
rition est assez tardive dans l’évolution de l’informatique, mais la
façon dont ils en affectent aujourd’hui tous les usages avec une in-
tensité croissante me semble justifier une approche qui les prenne
comme axe. Cela dit, je n’ai pas la prétention de traiter le sujet
complètement, mais plutôt de partir de quelques problèmes choisis
comme exemples. Et pour délasser le lecteur fatigué par des pas-
sages un peu techniques, le développement alternera descriptions
d’objets techniques et analyses de certaines attitudes sociales qu’ils
suscitent.

Cette invasion de nos activités par les systèmes d’exploitation,
que chacun peut vérifier en observant la prolifération des titres in-
formatiques dans les kiosques à journaux et les sujets de controverse
dans les soirées en ville, est un phénomène récent. Au début des an-
nées 1970 l’auteur de ces lignes était ingénieur système, c’est-à-dire
un spécialiste de ces objets techniques. Quand un convive dans un
dîner lui demandait ce qu’il faisait dans la vie, il répondait « in-
génieur système », profession de foi qu’il fallait faire suivre d’une
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explication, parce que la teneur de cette activité n’allait pas de soi.
J’y ai vite renoncé.

1.2 Quelques définitions
Un système d’exploitation est un logiciel destiné à faciliter l’uti-

lisation d’un ordinateur (je sais que cette assertion sera pour cer-
tains lecteurs une véritable provocation). L’ordinateur constitue le
matériel composé de fils, circuits, etc., inutilisable sans le logiciel
constitué de programmes. Les ordinateurs actuels sont suffisam-
ment complexes pour qu’il soit inconcevable de les utiliser sans la
médiation d’un système d’exploitation, mais ce n’a pas toujours été
le cas, et d’ailleurs certains petits ordinateurs qui vivent cachés à
bord des fours à micro-ondes, des ascenseurs, des voitures ou des
avions en sont parfois encore dépourvus.

Nous dirons qu’un ordinateur est un automate capable d’effec-
tuer des actions dites primitives (c’est-à-dire déterminées par ses
concepteurs, et que nous nommerons désormais « primitives » tout
court), de les enchaîner dans l’ordre voulu, de les répéter et sur-
tout de choisir, en fonction du résultat des actions précédentes,
la prochaine action à effectuer entre deux ou plusieurs possibilités
connues à l’avance.

L’ensemble des primitives d’un ordinateur donné constitue son
jeu d’instructions. Chaque instruction est un objet physique, en
l’occurence un circuit électronique, partie du processeur qui anime
l’ordinateur. Aujourd’hui les processeurs sont des microprocesseurs,
c’est-à-dire qu’ils sont réalisés par un circuit unique qui peut com-
porter jusqu’à trois milliards de transistors, mais jusqu’au début
des années 1990 les processeurs des ordinateurs les plus puissants
étaient constitués de circuits multiples implantés et interconnectés
sur des cartes électroniques, parce que les microprocesseurs, appa-
rus au début des années 1970, n’étaient pas assez puissants pour
les grands ordinateurs de l’époque, ils étaient cantonnés aux micro-
ordinateurs. La structure et le fonctionnement des circuits logiques
à base de semi-conducteurs feront l’objet de l’annexe B p. 423.

Un programme est un texte qui énumère, dans le bon ordre, les
primitives de l’ordinateur dont l’exécution mènera à la production
du résultat recherché. C’est le texte du programme qui pilote la
séquence des actions effectuées par l’ordinateur. Un logiciel est un
ensemble de programmes. Un système d’exploitation est un pro-
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gramme dont la fonction principale est de déclencher l’exécution
d’autres programmes, à bon escient de préférence.

Nous pouvons aussi dire les choses de la façon suivante : un ordi-
nateur est une machine qui a des états discrets. Ces états sont enre-
gistrés dans un dispositif appelé mémoire. Rédiger un programme
pour un ordinateur, c’est décrire la séquence de ses états succes-
sifs qui vont permettre d’obtenir le résultat voulu. Le programme
enchaîne les actions primitives qui vont affecter la mémoire pour
instaurer les états voulus successivement. Un ordinateur est un au-
tomate à états fini.

Les trois caractéristiques fondamentales d’un ordinateur sont
qu’il est programmable, automatique et universel :

— programmable : la nature des opérations à effectuer peut être
spécifiée complètement et exclusivement par le texte d’un
programme ;

— automatique : une fois lancée l’exécution d’un programme,
l’ordinateur assure cette exécution sans intervention exté-
rieure ;

— universel : capable d’exécuter n’importe quel programme,
c’est-à-dire tout enchaînement d’actions primitives décrivant
une procédure effective pour obtenir le résultat voulu. Une
procédure effective est l’enchaînement d’opérations élémen-
taires qui permettront d’exécuter les calculs nécessaires à la
solution de problèmes pour lesquels existent des solutions
calculables (il y a des problèmes sans solution et des solu-
tions incalculables ; les méthodes apprises à l’école pour faire
des additions ou des multiplications à la main sont des pro-
cédures effectives). Traduire ces opérations élémentaires en
termes d’actions primitives d’un ordinateur, c’est program-
mer.

Corollaire : si le programme lancé au démarrage de l’ordinateur
est un système d’exploitation, conçu comme dit ci-dessus pour dé-
clencher l’exécution d’autres programmes, qui sont ainsi en quelque
sorte des sous-programmes du système d’exploitation, les exécu-
tions de programmes différents pourront s’enchaîner. Nous y re-
viendrons.

Contrairement aux logiciels d’application, tels que traitement de
texte, calcul scientifique, programme financier ou de jeu, le système
d’exploitation ne sert pas à une tâche particulière, mais il est dans
la coulisse de toutes. Dans la coulisse, c’est-à-dire que l’utilisateur
peut ignorer jusqu’à son existence, et d’ailleurs cette ignorance est
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sans doute à mettre à son actif. Beaucoup d’utilisateurs de Macin-
tosh ne savent rien de macOS, et c’est la preuve que macOS remplit
sa mission sans faille. Quand le système d’exploitation (on peut dire
simplement système) se manifeste, souvent c’est pour signaler que
quelque chose ne va pas.

1.3 La couche visible du système
Pour l’utilisateur d’un micro-ordinateur, l’aspect le plus appa-

rent (et souvent le seul perceptible) du système d’exploitation, ce
sont les différents objets graphiques qui s’exhibent sur l’écran : les
fenêtres dans lesquelles s’affichent des textes ou des images, les dif-
férentes barres et poignées qui servent à déplacer les fenêtres ou à
en modifier les dimensions avec la souris, les barres de défilement
qui permettent de faire défiler le contenu visible dans une fenêtre,
les icônes sur lesquels on peut « cliquer » pour lancer l’exécution de
tel ou tel programme, les menus qui proposent un choix de fonctions
à exécuter, telles qu’imprimer le contenu d’une fenêtre ou... arrê-
ter l’ordinateur. Cet aspect visible du système d’exploitation sert
essentiellement à ouvrir, présenter et gérer des fenêtres et objets
graphiques analogues : nous pouvons l’appeler gestionnaire de fe-
nêtres ou interface utilisateur graphique (GUI, pour Graphical User
Interface).

Mais au-delà de cet aspect immédiat, dont beaucoup de gens
croient qu’il constitue le tout du système, il y a encore beaucoup de
choses qu’un système d’exploitation fait pour son utilisateur. Nous
avons dit que le système d’exploitation servait d’intermédiaire, si
possible facilitateur, entre l’utilisateur et l’ordinateur. Dans cette
optique, le gestionnaire de fenêtres est la partie la plus tournée vers
l’utilisateur, l’aspect le plus superficiel du système (ici le mot su-
perficiel ne dénote pas un jugement de valeur, mais qualifie ce qui
est à la surface visible, par opposition à ce qui est enfoui dans la
profondeur des entrailles de la machine). Cette partie qui est en sur-
face, directement accessible à la perception, nous pourrons l’appeler
interface (entre la personne et l’ordinateur). Nous dirons que c’est
une interface de haut niveau, non pas là encore par un jugement de
valeur, mais parce qu’elle donne de l’ordinateur et de son fonction-
nement une représentation très idéalisée, très métaphorique, en un
mot très abstraite par rapport à ce que serait une interface de bas
niveau, plus proche de l’ordinateur et moins parlante aux humains.
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1.4 Une représentation : le modèle en couches
À l’autre extrémité du système d’exploitation, si j’ose dire, du

côté de l’ordinateur, de ses circuits et de ses transistors, sont les
programmes qui interagissent directement avec les éléments maté-
riels de l’ordinateur. Ces parties du système constituent ce qui est
souvent appelé le noyau (kernel). Entre le noyau et l’interface utili-
sateur, il y a toute une série de couches intermédiaires qui distillent
les messages cryptiques du matériel pour délivrer à l’utilisateur une
information compréhensible. Les informaticiens utilisent communé-
ment cette représentation par une architecture en couches imagi-
née par le chercheur néerlandais Edsger Wybe Dijkstra (1930–2002)
dans un article fameux publié en mai 1968 par les CACM (Com-
munications of the Association for Computer Machinery), « The
structure of the THE multiprogramming system » [45].

Avant d’être le plan de construction du système concret, l’ar-
chitecture en couches est un modèle destiné à se représenter in-
tellectuellement les choses par des abstractions. Ce modèle est
utile pour « penser un objet dans lequel plusieurs logiques s’ar-
ticulent » (Michel Volle, http://www.volle.com/opinion/couches.htm),
lorsqu’il faut séparer différents niveaux d’abstraction. On nommera
couches basses les parties du système qui interagissent le plus di-
rectement avec le matériel de l’ordinateur, et couches hautes celles
qui sont plus proches de l’utilisateur. Il n’y a là encore aucun ju-
gement de valeur implicite dans ces expressions « couches basses »
et « couches hautes ». Et la réalisation des couches basses est sans
doute techniquement plus complexe, demande des compétences plus
rares que celle des couches hautes, cependant que ces dernières
exigent, outre des compétences techniques, des talents artistiques
et une imagination digne d’un urbaniste.

Encore plus que dans le monde des systèmes d’exploitation, le
modèle en couches a connu le succès dans celui des réseaux in-
formatiques, où les couches basses décrivent la transmission de si-
gnaux sur des supports physiques tels que câble téléphonique, fais-
ceau hertzien ou fibre optique, tandis que les couches intermédiaires
concernent l’acheminement de messages complexes à travers des ré-
seaux à la topologie également complexe, et que les couches hautes
traitent de la présentation de ces messages à travers une interface
utilisateur, de l’identification de leur destinataire et de son authen-
tification (ces derniers problèmes sont également traités par les sys-
tèmes d’exploitation, soit dit en passant). Les ensembles de règles

http://www.volle.com/opinion/couches.htm
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et de conventions qui régissent les communications entre les couches
de même niveau de plusieurs systèmes communicants constituent
des protocoles de communication. Les règles et les conventions qui
régissent les échanges entre une couche donnée et la couche immé-
diatement inférieure d’un même système constituent une interface.

de données
Couche 2, liaison

protocole couche 2

Couche 1, physique

interface interface

Couche 4, transport

protocole couche 4

interfaceinterface

Couche 3, réseau

protocole couche 3

interfaceinterface

Figure 1.1 – Exemple de modèle en couches : le réseau

Soit un système dont les communications avec d’autres systèmes
sont représentées par un modèle à n couches numérotées de 1 à n.
La règle fondamentale du modèle en couche c’est que la couche
de rang i (1 < i < n) d’un système donné ne peut communiquer
concrètement qu’avec les couches i − 1 et i + 1 du même système.
La couche 1 peut communiquer directement avec les couches 1 des
autres systèmes. La couche n assure l’interface avec l’utilisateur. La
couche i communique selon les règles du protocole qui lui corres-
pond avec les couches i des autres systèmes, mais cette communica-
tion passe par la médiation des couches inférieures. Ceci est illustré
par la figure 1.1 : dans un réseau informatique, la couche 1 (phy-
sique) concerne les problèmes de câblage ou de liaison hertzienne,
les éléments de la couche 2 assurent la communication entre deux
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stations du réseau reliées directement par un même segment de la
couche 1, la couche 3 est chargée de calculer un itinéraire dans un
réseau complexe, la couche 4 vérifie que le transport de bout en
bout des données s’effectue sans erreur et dans l’ordre (ceci sera
étudié en détail au chapitre 6 p. 153).

1.5 L’informatique est (aussi) une science
Compléter les définitions ci-dessus par un plan d’ensemble de la

discipline informatique n’est peut-être pas si futile qu’il y paraît et
peut aider, dans la suite, à savoir de quoi l’on parle. La figure 1.2
propose un tel plan.

Algorithmique

et

Programmation

Programmation

Linguistique
de la

architecture de

von Neumann

artificielle »

« Intelligence

Architecture

des
DonnéesRéseaux

des
Architecture

Machines

des
Architecture

Systèmes

d’Exploitation

Circuits et Matériels

Conception et

Réalisation de

Biologie moléculaire

informatique

Théorie du
signal

Théorie de
l’information

Analyse
Numérique

machine de

Turing

Analyse

combinatoire

Électronique

Linguistique Statistiques

Figure 1.2 – Les disciplines de l’informatique
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Au sein de l’informatique existent des disciplines dont la nomen-
clature n’est pas aussi bien établie que celles des mathématiques,
certes, et la classification proposée ici est probablement contestable.
Dans la partie d’un seul tenant de mon plan en croix j’ai mentionné
ce qui me semblait constituer les sept disciplines majeures, et la
proximité dans le plan se veut refléter la proximité des disciplines :
vers le haut, le plus abstrait, vers le bas, on se rapproche de la
matière.

J’ai mis l’ « intelligence artificielle » entre guillemets et dans
un cadre un peu à l’écart parce que cette discipline me semble,
au moins, très mal nommée. Les ellipses contiennent les noms des
grands paradigmes qui donnent les clés de l’informatique. Flottant
libres de cadres sont les noms de disciplines qui, pour avoir des
proximités avec l’informatique, n’en font pas partie, même si parfois
elles lui sont rattachées par erreur.

Le lecteur familier d’une autre science sera sans doute surpris
par cette description, surtout s’il vit et travaille en France. En ef-
fet, dans ce pays où l’informatique a du mal à se faire reconnaître
comme une discipline à part entière par les institutions de l’élite,
chacun l’imagine selon les applications (ou les représentations) qui
en sont faites dans son domaine. Ainsi le physicien a tendance à
la réduire au calcul, tant cette activité est pour lui associée à l’in-
formatique. Le biologiste s’étonnera de l’absence de l’analyse de
séquences dont il croit qu’elle est partie constituante de l’informa-
tique, tandis que le mathématicien imagine qu’elle se réduit à l’al-
gèbre du monoïde libre et que le statisticien n’y voit que l’analyse
en composantes principales. Tous ces domaines sont liés d’une façon
ou d’une autre à l’informatique, mais n’en font nullement partie.
Quant aux parties de l’informatique qui sont indépendantes, lorsque
leur existence n’est pas purement ou simplement ignorée, elles sont
considérées comme des techniques rudimentaires, alors que ce sont
souvent les domaines les plus complexes.

1.6 Architectures
Les lignes qui précèdent recourent à plusieurs reprises au terme

architecture. Il s’agit de plus que d’une commodité de langage, et
d’autre chose que d’un fantasme d’informaticien frustré de tra-
vailler toujours dans l’immatériel et l’abstrait et envieux du ma-
tériau concret palpé par le bâtisseur.
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Lorsque l’architecte conçoit un bâtiment, ou l’urbaniste un
quartier, leur préoccupation première, avant de concevoir chaque
pièce, ou chaque pâté de maisons, porte sur les moyens de circu-
ler entre ces éléments : couloirs, escaliers, halls, vestibules, ou rues,
allées, places, ponts, esplanades.

Il en va de même pour le concepteur d’un système informatique,
qu’il soit matériel ou logiciel. Comment l’information circule-t-elle
entre le disque dur et la mémoire centrale, de celle-ci au processeur ?
Comment les différents programmes d’un logiciel partagent-ils des
données, ou au contraire en garantissent-ils l’accès exclusif ? Voilà
les grandes questions de la conception informatique, et au cœur de
ces questions se trouve le grand aiguilleur, le grand régulateur : le
système d’exploitation. L’ouvrage de Hennessy et Patterson Archi-
tecture des ordinateurs [57] donnera au lecteur une vision appro-
fondie de ces questions et de certaines réponses qui leur ont été
apportées.

Le « plan de masse » des disciplines informatiques que nous
avons dessiné à la figure 1.2 renvoie à cette analogie architecturale.

1.7 Enjeux d’une histoire
L’histoire de l’informatique peut être considérée sous différents

angles : histoire de la pensée scientifique, histoire des techniques de
calcul automatique, histoire des ordinateurs. Ces trois éclairages (il
y en aurait d’autres) illumineraient une scène qui se joue depuis
plus longtemps qu’il n’est envisagé communément, la poursuite du
rêve prométhéen de construire un être mécanique pensant.

Si ce rêve, on l’imagine volontiers, a mobilisé les ingénieurs les
plus inventifs, de Ctésibios 1 d’Alexandrie à Steve Jobs, on néglige
souvent l’engagement dans cette voie de philosophes et savants
parmi les plus éminents, tels Blaise Pascal, Gottfried Wilhelm Leib-
niz, John von Neumann, ou on le sous-estime en réduisant cette
part de leur œuvre à un passe-temps. En fait Leibniz par exemple
est le précurseur de l’informatique moderne par trois contributions
majeures (et ignorées pendant plus de deux siècles) : la réalisation
concrète d’une machine capable d’effectuer les quatre opérations
arithmétiques, la conception d’une caractéristique universelle qui
préfigure les systèmes formels de la logique moderne et, partant,

1 Inventeur d’une clepsydre perfectionnée et d’un orgue à eau.
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les langages de programmation, enfin l’étude, sur des documents
chinois, de l’arithmétique binaire, dont il perçoit et analyse la sim-
plicité qu’elle peut conférer à un système de calcul automatique 2.
De même von Neumann est plus respecté pour la théorie des jeux
ou ses travaux de mathématiques pures que pour son invention de
l’ordinateur, la plus importante du XXe siècle.

D’autres précurseurs sont quant à eux tout simplement sous-
estimés comme hommes de science. Ce n’est que récemment que
la véritable stature de Charles Babbage (1791–1871) est apparue :
longtemps considéré comme l’ingénieur maniaque de machines à
calcul qui n’ont jamais marché, il avait en fait conçu avec sa ma-
chine analytique un ordinateur complet auquel n’a manqué que la
réalisation ; par ailleurs son rôle dans le progrès considérable des
mathématiques anglaises au XIXe siècle est désormais reconnu. La
même reconnaissance échoit finalement à Alan Turing, malgré le dé-
dain ou l’ignorance volontaire où les mathématiciens, spécialement
en France, relèguent tant la logique que les recherches sur les Fonde-
ments initiées par David Hilbert et Kurt Gödel. Bref, l’informatique
sera bientôt vraiment reconnue comme une science, peut-être...

Il faut dire que nous revenons de loin. Si nous sommes revenus.
Assez récemment, à la fin du siècle dernier, j’ai visité le très beau
Museum of Science and Industry de Chicago. La salle consacrée
à l’informatique, grande et belle, illustrait le déclin fatal infligé à
la dimension spectaculaire des ordinateurs par la miniaturisation
électronique. Cela dit, malgré le panneau Computer Science à l’en-
trée, qu’il s’agisse là d’une science n’était guère patent : on voyait
des exploits d’ingénieurs, ce qui d’ailleurs donnait la part belle aux
précurseurs français Blaise Pascal et Thomas de Colmar qui par-
tageaient avec Wilhelm Schickard et Charles Babbage le stand des
précurseurs d’avant l’électricité, des réalisations industrielles, mais
nulle mention qu’il y eût aussi, dans ce domaine, un paradigme, des
théories, des concepts, certes plus difficiles à mettre en vitrine que
des disques durs. On pourra m’objecter que c’est aussi un musée de
l’Industrie, mais bon, il y avait bien des salles de mathématiques...

Cette salle qui se disait de Computer Science était en fait de
machines à calculer et d’ordinateurs, ce qui n’est qu’un versant

2 Cf. le texte de Leibniz, écrit en français : https://laurentbloch.
net/MySpip3/L-arithmetique-binaire-par-Leibniz-98 et un exposé
des contributions leibniziennes : https://laurentbloch.net/MySpip3/
L-informatique-a-la-lumiere-de-quelques-textes-de-Leibniz

https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98
https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98
https://laurentbloch.net/MySpip3/L-informatique-a-la-lumiere-de-quelques-textes-de-Leibniz
https://laurentbloch.net/MySpip3/L-informatique-a-la-lumiere-de-quelques-textes-de-Leibniz
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de la chose. L’ordinateur apparaissait comme le fruit d’une évolu-
tion quasi darwinienne prenant son origine chez les machines méca-
niques, passant aux machines mécanographiques des années 1890 -
1950, puis aux grands calculateurs électroniques pré-informatiques,
pour aboutir avec l’ENIAC 3 à l’ordinateur.

Cette vision de l’histoire informatique est assez répandue, mais
assez discutable et surtout assez tronquée. À la sortie de cette salle
du musée une pancarte donnait un indice sur la nature du biais
donné à la présentation et sur l’orientation de la vision qui avait pu
l’engendrer : tout ce que j’avais vu était un cadeau de la compagnie
IBM. Je ne partage pas avec certains de mes collègues universi-
taires 4 le dédain pour les réalisations informatiques d’IBM, qui a
été à l’origine d’innovations majeures, comme le disque magnétique,
le processeur RISC, la multiprogrammation, le processeur en pipe-
line et bien d’autres. Mais il est inévitable qu’une compagnie dont
les origines sont dans la mécanographie soit sujette à y voir la nais-
sance de l’informatique, plus que dans les recherches menées à l’IAS
(Institute for Advanced Studies) de Princeton par des théoriciens
issus d’horizons différents, en l’occurrence Church, von Neumann
et Turing.

3 C’est ainsi que le présente le musée, mais l’ENIAC ne répond pas à la dé-
finition de l’ordinateur que nous avons donnée ci-dessus. Nous préciserons
cela au chapitre suivant, ainsi qu’à l’annexe C.

4 Dans cette locution le mot « universitaires » n’est pas un adjectif, épithète
de « collègues », mais un substantif en apposition à « collègues ». Je ne suis
pas universitaire, mais les universitaires informaticiens sont mes collègues en
informatique. La collégialité se déploie sur plusieurs plans.
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Introduction
Nous avons défini le système d’exploitation d’abord comme un

logiciel destiné à faciliter l’utilisation d’un ordinateur, puis comme
un programme dont la fonction principale est de déclencher l’exécu-
tion d’autres programmes. Nous allons le définir maintenant comme
un programme qui permet à un ordinateur de faire plusieurs choses
à la fois.

Pour pouvoir élaborer et nuancer cette définition, et comprendre
notamment ce qu’elle comporte de paradoxe, il nous faut approfon-
dir un peu notre vision de l’ordinateur que nous avons défini comme
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un automate capable d’effectuer des actions dites primitives (dé-
terminées par ses concepteurs) selon l’énumération qu’en donne le
texte d’un programme.

2.1 Modèle de l’ordinateur
C’est John von Neumann, mathématicien hongrois émigré aux

États–Unis, qui dans un document tout à fait remarquable de 1945
intitulé First Draft of a Report on the EDVAC et désormais dispo-
nible en ligne [97] a proposé pour l’ordinateur l’architecture repré-
sentée par la figure 2.1 1.

 

Architecture de von Neumann

Unité de
Contrôle

Unité
Arithmétique

Unité 
d’Entrée-Sortie

 

Accumulateur A

Registre R

 

Mémoire pour les

Instructions et les Données

Figure 2.1 – Structure de l’ordinateur

Les unités de contrôle 2, arithmétique et d’entrée–sortie consti-
tuent à elles trois l’unité centrale, ou le processeur de l’ordinateur.
Le processeur est constitué de circuits électroniques qui peuvent
exécuter des actions ; de nos jours il est généralement réalisé sous
la forme d’un composant électronique unique nommé microproces-
seur. L’ensemble des actions « câblées » dans le processeur constitue
le jeu d’instructions du processeur (les « actions primitives ») et dé-
termine le langage élémentaire de son utilisation, appelé « langage
machine ». À chaque instruction identifiée par son code correspond
un circuit particulier.

1 La figure et les deux alinéas qui suivent sont empruntés à mon livre Initiation
à la programmation avec Scheme, publié en 2011 par les Éditions Technip,
avec l’aimable autorisation de l’éditeur.

2 Une traduction plus exacte de l’anglais control unit serait « unité de com-
mande ». L’usage a entériné l’anglicisme.
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Le rôle de l’unité de contrôle consiste à permettre le déclenche-
ment de l’action (l’instruction) voulue au moment voulu. Cette ins-
truction peut appartenir à l’unité arithmétique, à l’unité d’entrée-
sortie ou à l’unité de contrôle elle-même. Une instruction peut en
outre consulter le contenu de la mémoire (la « lire ») ou modifier
le contenu de la mémoire (y « écrire »). De façon générale, une ac-
tion consiste soit à consulter ou à modifier l’état de la mémoire
ou d’un des registres A ou R (qui sont des éléments de mémoire
spéciaux incorporés à l’unité centrale), soit à déclencher une opéra-
tion d’entrée-sortie (communication avec le monde extérieur et no-
tamment l’utilisateur humain), soit encore à modifier la séquence
des instructions formulées par le programme en commandant de
« sauter » un certain nombre d’instructions sans les exécuter, ou de
« revenir en arrière » pour répéter des instructions déjà déroulées
(le texte du programme n’est pas modifié, mais est modifié l’ordre
dans lequel il est « lu »).

Point fondamental, un ordinateur conforme au modèle de von
Neumann exécute une instruction, et une seule, à la fois (principe
d’exécution séquentielle). En ce début de vingt-et-unième siècle,
pratiquement tous les ordinateurs se conforment extérieurement à
ce modèle, à quelques perfectionnements de réalisation technique
près qui améliorent les performances mais ne modifient ni le modèle
d’exécution ni la sémantique du traitement de l’information (nous
donnons une brève description de ces techniques au chapitre 9 page
308).

Comment indique-t-on à l’unité de contrôle le « moment voulu »
pour déclencher telle ou telle action ? C’est écrit dans le texte d’un
programme. Où est le programme ? Dans la mémoire.

La mémoire est constituée d’éléments susceptibles de prendre
des états. Un élément de base de la mémoire peut prendre deux
états distincts et peut servir à représenter une information élé-
mentaire, ou bit (binary digit, chiffre binaire). Cette représentation
d’une information par un élément de mémoire s’appelle un code.
Une mémoire avec beaucoup de bits permet le codage d’informa-
tions complexes, dans la limite de la taille de la mémoire.

Comme les constituants élémentaires de la mémoire ont deux
états, il est commode d’utiliser la numération binaire pour les re-
présenter et pour effectuer des calculs à leur sujet. À l’époque de
la scolarité de l’auteur, les systèmes de numération étaient intro-
duits en classe de cinquième, mais je me suis laissé dire que cette
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introduction n’était plus systématique. L’annexe A en donne les
rudiments.

Si les constructeurs des premiers ordinateurs avaient imaginé
des constituants élémentaires à trois états, l’informatique aurait-
elle été ternaire plutôt que binaire ? En fait tout laisse supposer que
l’extraordinaire développement de l’informatique doit beaucoup à
la grande simplicité de la numération binaire. Gottfried Wilhelm
von Leibniz déjà l’avait conçu 3. Les nombreuses tentatives pour
développer des machines décimales ont été décevantes, sauf pour
les calculettes. Et même si la technique fournissait aujourd’hui des
composants ternaires économiquement intéressants, il y a fort à
parier que l’informatique resterait binaire pour profiter de la sim-
plicité, de l’uniformité et de la régularité, en un mot de l’élégance,
des modèles formels qui lui donnent sa charpente.

Comme le bit est une unité d’information trop élémentaire pour
la plupart des usages, on manipule ordinairement des mots de mé-
moire, constitués d’un nombre donné de bits (32 ou 64 usuellement).
La taille du mot est une caractéristique importante de l’architec-
ture d’un ordinateur. On peut se représenter ces mots comme rangés
dans un grand tableau de cases numérotées. Le numéro de chaque
case est l’adresse du mot qu’elle contient.

Le chemin par lequel unité centrale, mémoire et organes
d’entrée-sortie communiquent s’appelle de façon générique un
« bus ». De façon un peu formelle, un bus est un graphe connexe
complet, ce qui veut dire en langage courant que tous les éléments
connectés au bus peuvent communiquer entre eux.

Quel fut le premier ordinateur ?
Comme suggéré par le titre de son rapport, First Draft of a Re-

port on the EDVAC [97], les principes qu’y exposait von Neumann
étaient destinés à s’appliquer à la construction d’une machine nom-
mée EDVAC qui aurait été la première réalisation de l’architecture
dite depuis de von Neumann. Il en fut autrement.

Comment von Neumann, mathématicien réputé à la position
scientifique bien établie dans plusieurs domaines, de la théorie des
ensembles au calcul des probabilités, en était-il venu à s’intéresser
au calcul automatique ? D’abord, il avait fréquenté Alan Turing
à l’IAS (Institute for Advanced Studies) de Princeton de 1936 à

3 https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98

https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98
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1938 et il connaissait ses travaux. Plus tard, Herman H. Goldstine
a raconté dans son livre [53] comment, en 1943, alors qu’il était
« scientifique du contingent » dans l’U.S. Navy et qu’il travaillait
au projet de calculateur ENIAC destiné aux calculs balistiques des
canons de marine, il avait aperçu von Neumann sur le quai de la
gare d’Aberdeen (Maryland), avait osé l’aborder et lui avait parlé
de son travail. Von Neumann avait été immédiatement passionné
et s’était joint au projet.

Le projet ENIAC (pour Electronic Numerical Integrator and
Computer) devait produire une grande machine à calculer et il avait
été mis en route à l’Université de Pennsylvanie en 1943 sous la di-
rection de J. Presper Eckert et de John W. Mauchly. Une fois réa-
lisé (à la fin de 1945), l’ENIAC serait le plus grand calculateur de
son temps. Mais l’ENIAC ne répondait pas à la définition que nous
avons donnée de l’ordinateur : une machine programmable, automa-
tique et universelle. La réalisation d’un calcul avec l’ENIAC deman-
dait des interventions manuelles pour adapter la configuration de
la machine, ce qui va à l’encontre de l’exigence d’être automatique
et programmable. En fait la programmation était réalisée essentiel-
lement au moyen de commutateurs et de tableaux de connexions,
comme sur les machines mécanographiques. C’est en pensant aux
moyens d’améliorer ce fonctionnement que von Neumann a conçu
son architecture.

Plus tard, Eckert et Mauchly ont accusé von Neumann d’avoir
pillé leurs idées, mais cette thèse ne résiste pas à la simple lec-
ture du First Draft of a Report on the EDVAC. Il est légitime de
dire qu’entre l’EDVAC et l’ENIAC il y a une différence du même
ordre qu’entre la lunette de Galilée et les lunettes réalisées aupa-
ravant par un Hollandais anonyme : Galilée a certes bénéficié de
l’exemple de son prédécesseur, mais, comme l’a souligné Alexandre
Koyré, sa lunette est la réalisation d’une théorie scientifique, alors
que l’instrument de son prédécesseur était le fruit d’une démarche
empirique. Le texte de von Neumann est un des fondements (avec
la machine de Turing) d’une science nouvelle. La construction de
l’EDVAC prendra du retard, et la première machine de von Neu-
mann sera britannique.

En 1995 de grandes manifestations ont été organisées aux États-
Unis pour célébrer le cinquantenaire de l’ENIAC comme celui du
premier ordinateur, mais c’était abusif. L’ENIAC représente sans
doute l’apogée des calculateurs pré-informatiques.
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Avant von Neumann, programmer, c’était brancher des fils sur
des tableaux de connexion ; à partir de lui, ce fut écrire des textes
(Samuel Goyet, séminaire Codes Source).

En fait les premiers ordinateurs véritables furent le MARK 1 de
l’Université de Manchester, réalisé sous la direction de Max New-
man, opérationnel en 1948, et l’EDSAC, construit à l’Université de
Cambridge sous la direction de Maurice Wilkes en 1949. Les que-
relles d’antériorité entre ces deux machines ne sont et ne seront sans
doute pas tranchées, mais le fait que cela se joue entre elles n’est
guère remis en cause. Les principes à la base de ces deux machines
avaient incontestablement été élaborés par John von Neumann aux
États-Unis, la théorie sous-jacente était celle du Britannique Alan
Turing, mais les réalisation étaient britanniques, d’où sans doute la
tentation d’une usurpation commémoratrice américaine...

Cette question de primauté ou pas de l’ENIAC est loin d’être
un détail. Selon la réponse qu’on lui donne :

— l’ordinateur, au sens moderne du terme a été inventé par
Eckert et Mauchly, ou par von Neumann ;

— la première réalisation est américaine, ou britannique ;
— l’informatique est née de l’évolution technique normale des

machines mécanographiques, ou d’une rupture épistémolo-
gique dont la source se trouve dans la recherche fondamen-
tale en mathématiques ;

— l’informatique est un bricolage d’ingénieur astucieux, ou une
percée intellectuelle de première importance.

2.2 Traitement de l’information
Construire des ordinateurs, puis écrire des programmes : le but

poursuivi par ces activités est de traiter de l’information. Traiter de
l’information c’est, à partir de données que nous conviendrons de
nommer D, leur faire subir le traitement décrit par le programme
P pour obtenir le résultat R.

Ceci est très général : D peut être une liste de nombres dont
nous voulons faire l’addition, R sera alors le nombre qui représente
leur somme, et il faudra écrire le programme P de sorte qu’il mène
au résultat. Mais D peut aussi être le manuscrit du texte que vous
êtes en train de lire, R le même texte mis en page et P devra alors
être un programme typographique.
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Le traitement devra être réalisé par un exécutant dont nous
n’avons pas besoin de supposer qu’il est un ordinateur, à ce stade
du raisonnement. Simplement, si l’exécutant est un humain doté
d’un crayon et d’un papier, les méthodes pour calculer la somme
d’une liste de nombres ou pour mettre en page un manuscrit ne
seront pas les mêmes que pour un ordinateur. L’être humain et
l’ordinateur ne sont pas aptes aux mêmes actions primitives (nous
dirons désormais primitives tout court). L’être humain, de surcroît,
est capable d’inventer à tout moment de nouvelles primitives, et
d’en oublier d’autres. L’ordinateur est bien plus simple.

Le traitement des données doit être effectif, c’est-à-dire que la
méthode de passage doit pouvoir aboutir pratiquement au résultat.
Prenons un exemple, soit D l’ensemble des numéros d’immatricu-
lation des voitures immatriculées en France 4. Les symboles utilisés
sont des chiffres et des lettres. Les règles de formation des numé-
ros d’immatriculation sont la syntaxe du langage. La sémantique
d’un numéro est l’identité de la voiture qui le porte. Considérons
R, l’ensemble des départements français. La correspondance qui,
à tout numéro d’immatriculation bien formé, fait correspondre le
département d’immatriculation de la voiture qui le porte est un
traitement de D, on sait comment le réaliser. En revanche la corres-
pondance qui, à tout numéro d’immatriculation bien formé, ferait
correspondre la commune d’immatriculation de la voiture associée
n’est pas un traitement de D, car on ne sait pas élaborer cette
information à partir du numéro, bien qu’elle existe sûrement ; les
données qui permettraient de la calculer ne font pas partie de D.
Cette correspondance ne peut pas être décrite de manière effective,
c’est-à-dire par un algorithme.

Un algorithme est la description, pour un exécutant donné,
d’une méthode de résolution d’un problème, autrement dit d’une
suite d’opérations qui fournissent le résultat cherché.

La description de la méthode, c’est-à-dire l’algorithme, doit être
adaptée à l’exécutant chargé d’effectuer le traitement. L’exécutant
sait effectuer un nombre fini d’actions, que l’on nomme ses primi-
tives (ce sont par exemple les instructions du jeu d’instructions du
processeur décrit ci-dessus). L’algorithme doit être constitué d’une
combinaison de ces primitives. Pour construire toutes les combinai-

4 Pour cet exemple j’utilise les anciens numéros, antérieurs à avril 2009. Les
nouveaux numéros en vigueur depuis cette date sont dépourvus de significa-
tion, et forment de ce fait un langage moins... significatif.
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sons possibles de primitives, Corrado Böhm et Giuseppe Jacopini
ont démontré dans un article célèbre des CACM en mai 1966 in-
titulé « Flow diagrams, Turing machines and languages with only
two formation rules » [20] qu’il suffisait de savoir réaliser l’enchaî-
nement de deux primitives (effectuer une action à la suite d’une
autre), la répétition d’une primitive donnée et le choix, pendant
l’exécution d’un traitement, entre deux primitives selon le résultat
d’un test. Ce qui « sait » réaliser ces combinaisons de primitives,
c’est en dernière analyse l’unité de contrôle du modèle de von Neu-
mann.

Un algorithme fournit, pour un exécutant donné, la décompo-
sition de la tâche à réaliser en primitives de l’exécutant.

2.3 Mémoire et action, données et programme
Nous avons dit que le programme résidait dans la mémoire : ce

point mérite d’être souligné. C’est l’innovation principale du mo-
dèle de von Neumann, cette invention porte le nom de « machine à
programme enregistré ».

De toute évidence, lorsque l’on y réfléchit maintenant, un pro-
gramme c’est de l’information. De l’information sur le traitement
à appliquer à l’information, de la méta-information, si l’on veut.
Mais à l’époque de von Neumann le concept de programme était
beaucoup moins bien formé qu’aujourd’hui. Dans les machines à cal-
culer telles que l’ENIAC le programme n’existait nulle part en tant
que texte, il était réparti entre différents tableaux de connexions et
autres commutateurs, d’où finalement le défaut de programmabilité
de cette machine, et en tout cas l’impossibilité de raisonner sur son
programme.

L’idée (géniale) de von Neumann consiste à dire que programme
et données seront enregistrés dans la même mémoire. Chaque case
de mémoire peut contenir un mot, ce mot peut représenter soit
une instruction, soit un élément de donnée. Un élément de donnée
peut être un nombre ou un caractère alphabétique, par exemple, ou
encore un nombre dont la valeur a une signification particulière :
l’adresse d’une autre donnée ou d’une instruction, c’est-à-dire le
numéro de la case mémoire où se trouve cette donnée ou cette
instruction.

Les instructions ne se réduiront pas à d’obscures connexions de
fils et de circuits, mais seront d’abord des éléments de signification
(des verbes, oserai-je dire) qui diront des choses très simples (bien
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sûr, l’unité de contrôle pourra, au vu de chacun de ces verbes,
sélectionner le circuit logique correspondant).

Dans le paragraphe précédent il y a une locution qui demande
éclaircissement : au vu. Comment l’unité de contrôle peut-elle voir
le verbe ? Pour l’instant nous dirons simplement que les circuits
logiques de l’unité de contrôle comportent des « aiguillages », qui
selon la valeur d’un ensemble de bits (le code opération de l’instruc-
tion) déclencheront le fonctionnement du circuit correspondant 5.

2.4 À quoi ressemble le langage machine ?
2.4.1 Premier programme

Voici un exemple de programme très simple, énoncé d’abord en
langage humain et illustré par la figure 2.2 p. 31 :

1. charge dans le registre A le nombre qui est dans la case mé-
moire numéro 20 ;

2. teste le contenu de A : s’il vaut zéro passe directement à l’ins-
truction 6 ; sinon ne fais rien, c’est à dire continue en sé-
quence ;

3. additionne au contenu du registre A le nombre qui est dans la
case mémoire numéro 21 (le résultat effacera l’ancien contenu
du registre A et prendra sa place) ;

4. copie le contenu du registre A dans la case mémoire numéro
22 (le résultat effacera l’ancien contenu de la case mémoire
numéro 22 et prendra sa place) ;

5. imprime le contenu de la case mémoire numéro 22 ;
6. fin.
La figure 2.2 montre les déplacements de données en quoi

consiste ce programme ; on se rappellera que les registres ne sont
rien d’autre que des positions de mémoire spéciales placées dans
les circuits du processeur pour que les traitements qui les affectent
soient plus rapides ; les numéros des instructions concernées figurent
dans des cercles à côté des flèches qui indiquent les mouvements de
données.

Chaque élément de la liste ci-dessus décrit en langage humain
une instruction d’ordinateur. Dans la mémoire, ces textes sont
codés sous forme d’un certain nombre de bits selon un format
fixe. Par exemple, supposons que nous disposons de 16 bits pour

5 La description du fonctionnement des circuits logiques a été reportée en
annexe B.
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Figure 2.2 – Exécution de programme

représenter une instruction (notre ordinateur a des mots de 16
bits), nos instructions pourront avoir le format suivant :

bits 0 à 4 bit 5 bit 6 bits 7 à 15
code numéro du premier numéro du second adresse

opération registre concerné registre concerné mémoire
(0 pour R, (0 pour R,
1 pour A) 1 pour A)

instruction code opération nom
mnémonique

chargement mémoire → registre 00001 LOAD
copie registre → mémoire 00010 STORE
addition mémoire à registre 00011 ADD
imprimer mémoire 00100 PRINT
test registre et branchement si zéro 00101 BZ
fin 00110 END
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La colonne intitulée « nom mnémonique » nous sera utile
ultérieurement, pour l’instant disons qu’elle peut nous servir à
désigner commodément les instructions. Avec ce codage, et en
supposant que la première instruction est chargée en mémoire
à l’adresse 0 (les numérotations des informaticiens commencent
souvent à 0) notre petit programme s’écrit en binaire :

code 1er registre 2nd registre adresse adresse
opération (en binaire) (en décimal)
00001 1 0 0 0001 0100 20

00101 1 0 0 0000 0101 5

00011 1 0 0 0001 0101 21

00010 1 0 0 0001 0110 22

00100 1 0 0 0001 0110 22

00110 1 0 0 0001 0110 22

soit, une fois éliminées les fioritures à l’usage du lecteur humain :

0000 1100 0001 0100
0010 1100 0000 0101
0001 1100 0001 0101
0001 0100 0001 0110
0010 0100 0001 0110
0011 0100 0001 0110

L’unité de contrôle va chercher ces instructions l’une après
l’autre et déclencher leur exécution. Le décodage par l’unité de
contrôle du code opération (5 premiers bits) permet d’activer le
circuit logique qui correspond à l’instruction désirée.

Nous donnons à la sous-section 9.2 du chapitre 9 des détails plus
fins sur l’exécution des instructions, mais le modèle simple ci-dessus
permet de comprendre l’essentiel.

2.4.2 Questions sur le programme
Ce programme peut susciter quelques interrogations :
— Que signifie la valeur d’adresse 5 (décimal) dans la seconde

instruction ? Ceci : si la première instruction est chargée,
nous le supposerons pour cet exemple, dans la case mémoire
0, la sixième sera dans la case 5. L’adresse, on l’a vu, n’est
pas autre chose que le numéro de case mémoire. Et l’instruc-
tion « test registre et branchement » ordonne, si le test est
positif, que le déroulement du programme soit modifié pour
se continuer par l’exécution de l’instruction qui se trouve
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à cette adresse (pour « sauter » à cette adresse). Si le test
est négatif, l’exécution se poursuit par l’instruction suivante,
comme si de rien n’était.

— Pourquoi nos instructions ont-elles deux champs « registre »
alors qu’elles utilisent un ou zéro registre ? Parce que le
format des instructions de notre ordinateur fictif est fixe,
et qu’il est prévisible qu’il aura besoin d’instructions qui
concernent deux registres, par exemple une addition registre
à registre. Il nous serait évidemment loisible d’imaginer un
ordinateur dont le format d’instruction soit différent, mais
il faut bien faire un choix. Ce qui est sûr, c’est qu’un format
d’instruction uniforme et de longueur fixe simplifie consi-
dérablement l’unité de contrôle, et que les ordinateurs réels
contemporains sont ainsi conçus 6 (il y a longtemps, des pro-
cesseurs avaient des instructions de longueurs diverses et
même variables : il s’est avéré que les inconvénients outre-
passaient largement les avantages).

— Pourquoi les instructions numéro 5 et 6, qui ne font référence
à aucun des deux registres A et R, ont-elles une valeur dans
chaque champ registre, en l’occurrence 1 qui désigne A et 0
qui désigne R ? Parce que le format des instructions de notre
ordinateur fictif est fixe, que chacune de ses instructions a
par hypothèse deux champs « registre » et qu’il faut bien
qu’un bit vaille 0 ou 1.

2.5 Mot d’état de programme (PSW)
Nous avons écrit à plusieurs reprises des locutions telles que « le

programme saute à telle adresse pour exécuter l’instruction qui s’y
trouve » : précisons ici cette notion assez vague de saut.

À tout moment le processeur détient l’adresse de la prochaine
instruction à exécuter dans le compteur de programme (PC, pour
Program Counter, ou IP pour Instruction Pointer ; pour les pro-
cesseurs Intel l’appellation est « eip » ; on trouve aussi compteur
ordinal). Lors du démarrage de l’ordinateur, le PC est chargé avec
l’adresse de la première instruction à exécuter, et lors de l’exécu-
tion de chaque instruction ultérieure le processeur place dans le PC
l’adresse de l’instruction consécutive. Un saut, ou branchement,

6 ... à l’exception notable des processeurs Intel x86.
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consiste à placer dans le PC l’adresse de l’emplacement dans le
texte du programme où est située l’instruction désirée.

Pour anticiper un peu, lorsque le système d’exploitation retire
le contrôle du processeur à un programme en cours d’exécution,
que nous appellerons un processus, pour le donner à un autre, le
PC du nouveau processus est chargé à la place de celui du prédéces-
seur, et ce PC nouvellement chargé contient l’adresse à laquelle le
processus doit redémarrer (s’il avait été préalablement interrompu)
ou l’adresse de démarrage du programme correspondant, s’il s’agit
d’un processus « vierge ».

Le PC est dans la plupart des processeurs un des éléments d’un
groupe d’informations appelé « mot d’état de programme » ou Pro-
gram Status Word (PSW), que nous retrouverons plus loin.

2.6 Premier métalangage
2.6.1 Vers un langage symbolique

Au tout début des ordinateurs les programmes s’écrivaient lit-
téralement comme celui de la section 2.4.1, avec des 0 et des 1.
C’était évidemment insupportable. Aussi a-t-on rapidement inventé
une notation mnémonique mieux adaptée à l’usage par les êtres hu-
mains. Cette notation consiste en ceci :

— donner un nom symbolique à chaque code opération (dans
notre exemple, ceux du second tableau de la section 2.4.1) ;

— représenter les nombres en notation décimale ;
— séparer les opérandes par des virgules ;
— supprimer la mention des opérandes sans objet ;
— placer (si besoin est) devant chaque instruction une étiquette

symbolique qui permet de la désigner.
Notre programme devient maintenant :

étiquette code op. opérandes
LOAD 1, 20
BZ 1, FIN
ADD 1, 21
STORE 1, 22
PRINT 22

FIN END
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Les transformations qu’il faudra appliquer à ce programme sym-
bolique pour produire le texte du programme binaire, seul « com-
préhensible » par les circuits logiques de l’ordinateur, sont simples
et surtout très mécaniques. La plus complexe concerne le traite-
ment des étiquettes ; ainsi pour transformer la seconde instruction
BZ 1, FIN en :

0010 1100 0000 0101
il faudra calculer l’adresse qui correspond à FIN dans la sixième
instruction, ce qui revient à compter combien il y a de mots entre
la première et la sixième instruction. On dit que FIN est un nom
symbolique qui désigne l’instruction d’adresse 5. Cet usage de noms
symboliques est important et nous y reviendrons, notamment à la
section 4.3.2 p. 91.

De même que le symbole FIN correspond à une adresse, nous
pouvons imaginer de désigner par des symboles les adresses des
cases mémoire qui contiennent les données et le résultat du calcul.
Notre programme deviendra alors :

étiquette code op. opérandes
LOAD 1, VAL1
BZ 1, FIN
ADD 1, VAL2
STORE 1, RESULT
PRINT RESULT

FIN END
... (d’autres instructions éventuelles)

VAL1 18
VAL2 42
RESULT 0
Comment les symboles vont-ils être transformés en adresses ?

La réponse quelques lignes plus bas.

2.6.2 Adresses absolues, adresses relatives
Nous avons dit que les symboles FIN, VAL1, VAL2, RESULT dé-

signaient des cases dans la mémoire, ou pour le dire autrement
représentaient des adresses. Il s’agit jusqu’ici de désigner chaque
case par son numéro, c’est-à-dire son adresse absolue : il pourrait
être plus commode que ce soit une adresse relative, par rapport
au début du texte du programme. Ceci permettrait de s’affranchir
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de l’hypothèse selon laquelle le programme est forcément chargé à
partir de l’adresse 0.

Supposons que le programme soit chargé à une adresse quel-
conque, par exemple 256 ; nous allons supposer aussi que nous dis-
posions d’un registre pour conserver cette information ; ce registre
sera appelé le registre de base pour le programme considéré. Chaque
adresse manipulée par le programme sera en fait calculée comme la
somme de l’adresse relative qui figure dans le texte du programme
(sous forme numérique ou comme un symbole) et du contenu du
registre de base. Ainsi le fonctionnement de notre programme sera
indépendant de son emplacement en mémoire. Nous reviendrons
sur ce mécanisme à la section 4.3.2.

Le programme que nous avons en remplaçant les valeurs numé-
riques des adresses par des noms symboliques, les codes opération
binaires par des noms mnémoniques et les valeurs binaires par des
nombres décimaux s’appelle un programme symbolique. Ces trans-
formations simples transforment radicalement l’acte de program-
mer : au lieu d’une suite illisible de 0 et de 1 le programmeur dis-
pose d’un langage symbolique, certes rudimentaire mais infiniment
plus expressif.

Le texte du programme que nous avons sous les yeux maintenant
est assez différent de celui en langage machine binaire : s’il est assez
évident qu’il est plus facile à écrire pour un être humain, il va nous
falloir disposer d’un outil de traduction du programme symbolique
en langage machine.

2.6.3 Assembleur, table des symboles
Le programme qui réalise cette traduction du langage symbo-

lique en texte binaire directement exécutable par la machine s’ap-
pelle un assembleur. Par extension l’habitude s’est établie de nom-
mer assembleur un tel langage symbolique. Notre exemple est bien
sûr extrêmement simplifié par rapport aux assembleurs réels, mais
cet assembleur-jouet est un modèle raisonnablement réaliste et suf-
fira au propos de ce livre, qui n’est pas de vous apprendre à pro-
grammer en assembleur.

Il reste un mystère à élucider : comment l’assembleur procède-
t-il pour traduire les noms symboliques en adresses ? L’assembleur
va construire un élément important du programme, la table des
symboles, ce qui se fait en deux temps : dans une première passe
l’assembleur dresse la liste de tous les symboles qu’il rencontre,
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dans une seconde passe il calcule la distance (en nombre de cases
mémoire) entre le début du texte du programme et l’emplacement
où le symbole est défini ; cette distance est l’adresse relative désignée
par ce symbole par rapport au début su programme, et sa valeur
est placée dans la table.

L’assembleur représente par rapport au langage machine un mé-
talangage, plus loin de la réalité concrète de l’ordinateur, c’est-à-
dire plus abstrait et de ce fait plus simple pour l’être humain. En
fait, ceci est la première marche de l’escalier de métalangages de
plus en plus abstraits que gravit l’usage contemporain des ordina-
teurs pour être plus accessible aux personnes. Simplement, pour
qu’un langage, aussi abstrait soit-il, puisse prétendre à la program-
mation des ordinateurs, il faut prouver que tout programme bien
formé, c’est-à-dire conforme à sa syntaxe et à sa sémantique, peut
se traduire en langage machine, de façon univoque, et par un algo-
rithme.

2.6.4 Traduction de langages
J’ai mentionné plus haut (p. 29) le résultat théorique très im-

portant de Böhm et Jacopini [20] qui donne du même coup la voie
d’une telle preuve et son équivalence avec le modèle de la machine
de Turing. Un langage qui satisfait à toutes ces conditions est dit
Turing-équivalent. C’est le cas des langages de programmation gé-
néraux, tels que C, Java, Lisp ou Fortran, mais il y a des langages
non-Turing-équivalents et néanmoins très utiles, comme le langage
SQL d’accès aux bases de données, HTML et XML pour décrire
des documents, etc.

Un programme qui traduit un langage de programmation dans
un autre, généralement de plus bas niveau, s’appelle un compila-
teur. Un métalangage de l’assembleur est appelé un langage évolué.
Fortran fut en 1954 le premier langage évolué. Un langage évolué
est en principe indépendant de l’ordinateur utilisé : il suffit pour
exécuter un programme écrit en langage évolué sur un ordinateur
quelconque de disposer d’un compilateur qui le traduise vers l’as-
sembleur propre à cet ordinateur.

2.7 Comment cela démarre-t-il ?
Pour expliquer le fonctionnement du programme ci-dessus nous

avons supposé qu’il était chargé en mémoire à l’adresse 0. Mais
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comment s’est-il retrouvé là, sachant que la mémoire des ordina-
teurs est réalisée, en ce début de vingt-et-unième siècle, par des
dispositifs techniques tels que l’état en est effacé dès la coupure de
l’alimentation électrique ? Le principe est le suivant :

— Pendant son exécution, le programme, sous la forme binaire
que nous venons de décrire, est enregistré dans la mémoire
centrale.

— Quand l’ordinateur est éteint (ou quand un autre pro-
gramme est en cours d’exécution), ce même programme est
stocké, sous cette même forme binaire, sur un disque dur, ou
une disquette, ou un CD-ROM... bref sur 7 une mémoire per-
manente externe (par opposition à mémoire centrale) acces-
sible par l’Unité d’entrée-sortie de l’architecture de von Neu-
mann. Un programme stocké sur disque y réside sous forme
d’un fichier ; nous n’avons pas encore étudié les fichiers, mais
disons pour l’instant qu’un fichier est un ensemble de don-
nées identifié et délimité sur un support externe.

— Une mémoire permanente externe a les mêmes propriétés
que la mémoire centrale quant à la capacité de contenir
l’information, mais elle s’en distingue par la capacité à la
conserver après la coupure du courant. Il ya aussi une diffé-
rence considérable de temps d’accès. Pour que l’information
contenue dans une mémoire externe soit traitée par l’Unité
centrale, il faut au préalable la recopier dans la mémoire
centrale. C’est le rôle de l’Unité d’entrée-sortie.

— Tout ordinateur moderne possède sur sa carte-mère un cir-
cuit spécial de démarrage dont le rôle est de lancer un pe-
tit programme contenu dans un élément de mémoire non-
volatile physiquement distinct des autres composants de la
carte mère de l’ordinateur ; depuis les années 1990 c’est en
général de la mémoire Flash, analogue à celle des clés USB et
des disques SSD, ce qui permet de le modifier. Ce programme
spécial, le BIOS, est, par construction, activé à la mise sous-

7 Il y aurait à dire sur l’usage de la préposition sur quand il s’agit d’une mé-
moire externe par opposition à dans pour la mémoire centrale. Les mémoires
externes sont presque toujours des dispositifs où effectivement l’information
est enregistrée à la surface d’un médium (disque magnétique, DVD) cepen-
dant que jadis la mémoire centrale était réalisée par de belles structures
tridimensionnelles de tores de ferrite traversés de fils conducteurs, dont le
souvenir a survécu à l’avènement des circuits électroniques multicouches mais
plats.
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tension. Son action consiste à aller chercher sur une mémoire
externe préparée à cet effet un autre programme un peu
moins petit, à le recopier en mémoire centrale et à en dé-
clencher l’exécution. Ce processus est connu sous le nom de
boot-strap ou simplement boot, mais il est permis de dire
amorçage. Le programme que le circuit de démarrage va
chercher sur la mémoire externe s’appelle programme de
boot. Une mémoire externe sur laquelle on aura enregistré
un programme de boot convenable s’appelle un disque boo-
table, une clé USB de boot, etc. Ce processus d’amorçage sera
examiné plus en détail au chapitre 12 p. 392.

— Que va faire le programme de boot ? Charger en mémoire
centrale le programme qui lui aura été désigné lors de sa
conception ; dans l’exemple de la section précédente ce sera
notre petit programme–jouet, mais dans le monde réel ce
sera, vous l’avez deviné, le système d’exploitation, qui en-
suite lancera lui-même d’autres programmes, au fur et à
mesure des demandes qui lui seront adressées. Plus précisé-
ment, la partie du système qui est lancée après l’amorçage,
et qui en est l’âme, est appelée noyau (kernel) du système.

2.8 Quel est le rôle de la mémoire ?
Nous avons introduit la notion de mémoire en disant qu’une

action du processeur consistait à consulter ou à modifier l’état de
la mémoire. Cette définition de l’action est très importante, elle
trace la ligne de séparation entre la conception mathématique tra-
ditionnelle du calcul et la conception informatique liée à la notion
de procédure effective. La mathématique ignore cette notion d’état,
qui introduirait dans son univers d’abstraction un aspect physique
totalement incongru.

L’informatique, et plus précisément la programmation des ordi-
nateurs, confère au calcul une dimension concrète, effective. C’est
un peu comme si le papier sur lequel le mathématicien inscrit
les signes du calcul avec un crayon acquérait un statut théorique.
Ce passage permanent du concret à l’abstrait est d’ailleurs l’agré-
ment suprêmement fascinant de la programmation : dire c’est faire.
J’énonce la formule d’une action, et la machine l’exécute.

La mémoire possède donc un statut théorique important : ce qui
matérialise le calcul, ce sont les états successifs de la mémoire, et
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le moteur qui anime l’ordinateur et produit cette succession d’états
est l’aptitude de l’unité centrale à affecter la mémoire, à modifier
son état, à effectuer ce que l’on appelle une affectation.

Parlons de l’affectation. Un mot de mémoire peut donc être uti-
lisé pour emmagasiner un état du calcul. On dira que c’est une va-
riable, au sens de la programmation, qui est différent de l’acception
mathématique usuelle. Une variable au sens de la programmation
est un objet doté des qualités suivantes :

— un nom ; en langage machine, le nom d’une variable est son
adresse, dans les langages évolués c’est un symbole plus com-
mode mais équivalent en dernière analyse à une adresse ;

— une valeur ; la valeur est celle du nombre binaire contenu
dans le mot, mais il est possible de le considérer comme
un code auquel on confère une sémantique particulière, par
exemple un caractère alphabétique, ce qui ouvre la voie au
traitement de texte ;

— il est possible de « prendre » cette valeur, par exemple en
langage machine pour la recopier dans un registre ou dans
un autre mot de la mémoire ;

— il est possible de modifier cette valeur, par exemple en co-
piant dans le mot le contenu d’un registre ou d’un autre mot
de la mémoire : c’est l’affectation 8.

Le modèle théorique qui rend compte de ce que nous venons de
dire de la mémoire est la machine de Turing.

2.9 La machine de Turing 9

Le but de Turing lorsqu’il a imaginé sa machine (toute abstraite
et théorique, il va sans dire) était de donner une chair à la notion
abstraite de procédure effective. Une procédure effective, c’est un
procédé pour effectuer un calcul, par exemple la démarche à suivre
pour faire une multiplication, telle qu’elle vous a été enseignée à
l’école.

Le modèle formel d’une procédure effective (pour décrire un al-
gorithme) doit posséder certaines propriétés. Premièrement, chaque

8 Nous raffinerons cette définition de la variable à la section 4.2.3 p. 86.
9 Les cinq alinéas qui suivent sont empruntés à mon livre Initiation à la pro-

grammation avec Scheme, publié en 2011 par les Éditions Technip, avec
l’aimable autorisation de l’éditeur.
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procédure doit recevoir une définition finie. Deuxièmement, la pro-
cédure doit être composée d’étapes distinctes, dont chacune doit
pouvoir être accomplie mécaniquement. Dans sa simplicité, la ma-
chine de Turing déterministe composée des éléments suivants ré-
pond à ce programme :

— une mémoire infinie représentée par un ruban divisé en cases.
Chaque case du ruban peut recevoir un symbole de l’alpha-
bet défini pour la machine ;

— une tête de lecture capable de parcourir le ruban dans les
deux sens ;

— un ensemble fini d’états parmi lesquels on distingue un état
initial et les autres états, dits accepteurs ;

— une fonction de transition qui, pour chaque état de la ma-
chine et chaque symbole figurant sous la tête de lecture,
précise :
— l’état suivant ;
— le caractère qui sera écrit sur le ruban à la place de celui

qui se trouvait sous la tête de lecture ;
— le sens du prochain déplacement de la tête de lecture.

La configuration d’une machine de Turing peut être représentée
par un triplet (q,m,u) où q est l’état de la machine, m le mot qui
apparaît sur le ruban avant la position de la tête de lecture, u le
mot figurant sur le ruban entre la position de la tête de lecture et
le dernier caractère non blanc.

Un arc du graphe de la fonction de transition peut être repré-
senté par un quintuplet (qi, si, sj, x, qj) où :

— qi est l’état de départ ;
— si est le symbole pointé avant l’exécution du cycle ;
— sj est le symbole qui doit remplacer si ;
— x est un élément de {G,D,w} (G pour gauche,D pour droite,

w pour un déplacement nul) ;
— qj est l’état de fin de cycle.
Pour se donner une intuition de la chose, imaginons une

M.T. (machine de Turing) avec un alphabet {0, 1,<espace>} ; nous
conviendrons d’utiliser le système de numération unaire (celui que
vous utilisez pour marquer les points au ping-pong, autrement dit
« les bâtons ») et de séparer les nombres par des 0. Cette machine
est représentée par la figure 2.3 p. 42. Pouvons-nous grâce à elle
additionner deux nombres ?

Notre M.T. fonctionnera selon un cycle qui consiste à passer
successivement par les trois phases suivantes, puis à recommencer :
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Phase de lecture - La machine lit le contenu de la case courante
et le transmet comme paramètre d’entrée à la fonction de
transition.

Phase de calcul - La valeur de la fonction de transition est cal-
culée en fonction de l’état courant et de la valeur contenue
dans la case courante.

Phase d’action - L’action déterminée par la fonction de tran-
sition est effectuée ; elle comporte (éventuellement) une mo-
dification de la valeur contenue dans la case courante et un
déplacement de la tête de lecture ; cette phase d’action est
donc capable de produire des symboles. 

Machine de Turing

 

table des transitions :

 

((q0i, s0i, s0j, x0, q0j)
  (q1i, s1i, s1j, x1, q1j)
  (q2i, s2i, s2j, x2, q2j)
  ...)

0111101110

 

transparents sans titre  Page 1  Jeudi 29 Janvier 1998  13:41

Noir couleurs directes plaque

Figure 2.3 – Un modèle théorique

Le ruban mentionne successivement les nombres 4 et 3. Pour
les additionner il suffit que la tête de lecture lise successivement les
quatre chiffres unaires qui constituent le nombre 4, dont la fin sera
indiquée par l’occurrence du signe zéro. Il faudra alors supprimer le
zéro et récrire d’une case à droite les chiffres du nombre 3, jusqu’à
la rencontre d’un signe zéro, qui subira le même traitement, pour
obtenir 7. L’écriture de la table des transitions constituera pour le
lecteur un exercice amusant (dont la solution est donnée ci-dessous).
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État symbole symbole sens du État Commentaires
avant lu écrit déplacement après
q0 0 0 G q0 Parcours vide
q0 1 1 G q1 Début de m

q1 1 1 G q1 Parcours de m

q1 0 1 G q2 Fin de m,
remplacement
de 0 par 1

q2 1 1 G q2 Parcours de n

q2 0 0 D q3 Fin de n, recul
q3 1 0 w q4 Remplacement

du dernier 1
de n par 0, fin.

On peut doter sa Machine de Turing de l’alphabet fini de son
choix. Son ruban peut être infini dans les deux sens ou dans un
seul. Elle peut même avoir plusieurs rubans. On montre (Turing
a montré) que ces diverses machines sont équivalentes. Tous les
langages de programmation modernes sont équivalents à la Machine
de Turing.
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3.1 Premiers essais
À l’époque des premiers ordinateurs, à la fin des années 1940,

il n’y avait rien qui annonçât les systèmes d’exploitation. Mau-
rice Vincent Wilkes a raconté le lancement et l’exécution du pre-
mier programme sur l’EDSAC : son texte était sous une forme tout
à fait similaire au format binaire donné en exemple à la section
2.4.1. Chaque chiffre binaire était introduit manuellement à l’aide
de commutateurs. Puis le programme se déroulait durant des di-
zaines d’heures, pour finalement afficher le résultat attendu (une
table de nombres premiers en l’occurrence). On a vu comment l’in-
vention des langages symboliques, puis d’autres niveaux de méta-
langages, allait simplifier les opérations de rédaction proprement
dite du programme. Mais il fallait aussi faire des progrès sur la fa-
çon d’introduire programmes et données dans la machine et d’en
extraire les résultats.

L’introduction manuelle des données était une perte de temps :
un ingénieur qui travaillait dans l’équipe de Gene Amdahl (un des
plus fameux architectes d’ordinateurs), Nathaniel Rochester, ima-
gina au début des années 1950 de les enregistrer sur bande magné-
tique au préalable. Le premier ordinateur qui les utilisa, l’IBM 701,
fut livré en 1953 au Department of Defense américain (DoD dans
la suite de ce livre), ce qui illustre la tradition continue de finance-
ment des progrès de l’informatique sous l’impulsion des commandes
militaires, ici celles de la guerre de Corée.

Cette utilisation des bandes magnétiques connut un nouveau
développement avec l’IBM 704, livré fin 1955. Sur cette machine
conçue par Gene Amdahl, l’ingénieur de General Motors Bob Pa-
trick écrivit un programme (nommé GM-NAA I/O, pour General
Motors and North American Aviation Input/Output system) qui
enchaînait automatiquement entrée des données, calcul, impression
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des résultats, entrée des données, etc. L’IBM 704 fut d’ailleurs le
support d’un nombre considérable d’innovations capitales 1.

Assez vite une constatation se fit jour : l’impression des résul-
tats, à la cadence d’un télétype capable d’imprimer dix caractères
par seconde, voire même leur écriture sur bande magnétique, pou-
vait prendre un temps aussi long que le calcul proprement dit, ce qui
immobilisait la coûteuse unité centrale pour une tâche somme toute
subalterne. Le mot « coûteuse » doit être replacé dans le contexte
de l’époque : le prix du 704, avec sa mémoire de 4096 mots de 36 bits
qui semblait énorme à l’époque (elle fut ensuite étendue à 32 768
mots, à comparer au milliard de mots du plus petit ordinateur en
vente aujourd’hui au supermarché le plus proche de votre domi-
cile !), se chiffrait en millions de dollars de l’époque, et il n’y eut
qu’une vingtaine d’exemplaires construits pour des clients fortunés
tels que les militaires ou de grands centres de recherche comme le
MIT (Massachusetts Institute of Technology).

Il aurait été possible de réduire la perte de temps due à l’impres-
sion des résultats en les écrivant provisoirement sur une mémoire
auxiliaire électromagnétique (disque, bande, tambour...) beaucoup
plus rapide qu’une imprimante, puis en les imprimant plus tard,
pendant que l’unité centrale effectuerait d’autres calculs. Cela sem-
blait possible parce que la tâche d’impression, ralentie par les opé-
rations mécaniques de l’imprimante, n’utilisait les circuits de l’unité
arithmétique et logique que fort peu, voire pas du tout si l’on avait
pris soin d’enregistrer avec les résultats proprement dits des codes
de commande destinés à l’électronique (rudimentaire) de l’impri-
mante pour indiquer les sauts de ligne, de page, etc.

La réalisation de cet objectif apparemment modeste nécessitait
encore un peu de programmation : à la fin du programme de cal-
cul il fallait qu’un programme déclenchât d’une part le démarrage
du programme d’impression (destiné à vivre sa vie indépendam-
ment), d’autre part le démarrage du programme de calcul suivant.
Avant de lancer le programme d’impression il fallait aussi vérifier

1 Le parti-pris de cet ouvrage est de ne pas entrer dans le détail de l’his-
toire des ordinateurs, à laquelle ont déjà été consacrés des livres excellents
dont le lecteur trouvera les références dans la bibliographie de celui-ci. Je me
contenterai de donner la liste de ces innovations sans les décrire : seconde uti-
lisation (derrière l’UNIVAC 1103A) de la mémoire à tores de ferrite inventée
par An Wang en 1950, arithmétique à virgule flottante, premier langage de
programmation évolué (Fortran), premier langage de programmation fonc-
tionnelle (Lisp).
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que l’impression des résultats précédents était bien terminée. Pen-
dant qu’on y était, on procéderait à une optimisation analogue en
autorisant le recouvrement entre le temps de calcul et le temps de
lecture des données nécessaires au calcul suivant.

Il apparut vite assez logique de confier cette mission, organiser
le recouvrement dans le temps de plusieurs activités, à un « méta-
programme », nommé moniteur, chargé de déclencher à l’instant
convenable l’exécution des programmes d’application, qui pour-
raient être considérés comme ses sous-programmes. Nous étions en
1955 et l’ancêtre des systèmes d’exploitation était né.

Nous allons décrire les traits marquants de l’évolution des sys-
tèmes à partir de cet ancêtre rudimentaire, mais auparavant il
convient de préciser un peu notre vision de ce qu’est un programme :
le chapitre 2 nous en a donné une vision statique, centrée sur le texte
qui décrit l’algorithme, les sections qui suivent insistent sur l’aspect
dynamique, ce qui se passe pendant l’exécution du programme.

3.2 Simultanéité et multiprogrammation
Nous avons annoncé au début du chapitre 2 que nous allions

compléter notre définition du système d’exploitation par la capa-
cité qu’il pourrait conférer à l’ordinateur par lui piloté de faire
plusieurs choses à la fois. Or nous avons aussi mentionné comme
une caractéristique essentielle de l’architecture de von Neumann
que les ordinateurs exécutaient une et une seule instruction à la
fois. S’agit-il là d’une contradiction ?

En fait, c’est le principe de von Neumann qui est exact, et le
système d’exploitation ne procurera que l’illusion de la simulta-
néité, une pseudo-simultanéité 2, Devons-nous néanmoins acheter
des ordinateurs aussi fallacieux ? Oui. En effet, le temps d’exécution
d’une instruction câblée du processeur est très court, de l’ordre de la
nano-seconde, ce qui procure plusieurs centaines de millions d’ins-
tructions par seconde, et ainsi une tranche de temps de quelques

2 Ceci est vrai pour les ordinateurs qui ont un seul processeur. Il y a des ordi-
nateurs à plusieurs processeurs capables d’exécuter plusieurs programmes en
vraie simultanéité. En première approximation nous considérerons un ordina-
teur à n processeurs comme n ordinateurs indépendants. Un tour d’horizon
des extensions et des dépassements de l’architecture de von Neumann figure
au chapitre 9.
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fractions de seconde, partagée entre plusieurs processus, donne à
l’échelle macroscopique l’illusion de la simultanéité.

3.2.1 Chronologie d’une entrée-sortie
Voyons ce qui se passe lorsque l’utilisateur d’un ordinateur de-

mande une opération macroscopique au logiciel qu’il utilise, par
exemple « déplacer le curseur du traitement de texte à la fin de la
ligne » :

— Cette opération va peut-être demander l’exécution de plu-
sieurs milliers d’instructions élémentaires, disons dix mille
en étant large.

— Le temps mis par l’utilisateur pour commander le déplace-
ment du curseur vers la fin de la ligne sera, disons, d’un quart
de seconde. Pour simplifier le modèle nous supposerons que
l’opération est commandée par un raccourci au clavier qui
« consomme » vingt mille instructions. (L’usage de la souris
engendre des événements dont la détection et le traitement
par le système sont complexes.)

— Pour qu’aucun temps d’attente ne soit perceptible à l’utili-
sateur, ce qui produirait de l’inconfort, il faut que l’action,
une fois commandée, soit effectuée dans un délai de deux
centièmes de seconde (c’est ici encore très généreux).

— Le budget des délais pour notre opération est donc le sui-
vant : nous disposons tout d’abord de 0,25 seconde pour exé-
cuter 20 000 instructions, puis de 0,02 seconde pour exécuter
10 000 instructions. Or si notre ordinateur peut exécuter un
milliard d’instructions par seconde, valeur banale en cette
année 2018, nous voyons qu’il nous reste énormément de
marge, puisqu’en 0,25 seconde il peut exécuter 250 millions
d’instructions élémentaires, et en 0,02 seconde, 20 millions.

— Le système d’exploitation va donc permettre l’exécution
« pseudo-simultanée » de plusieurs programmes tels que ce-
lui que nous avons décrit :
— Nous avons dit qu’il fallait à l’utilisateur 0,25 seconde

pour effectuer la commande par un raccourci au cla-
vier : c’est plutôt vers la fin de ce délai que, les opé-
rations manuelles terminées, le logiciel de traitement de
texte (et en fait d’autres programmes liés notamment
au gestionnaire de fenêtres, mais négligeons ces aspects
pour l’instant) vont exécuter les 20 000 instructions né-
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cessaires pour capter cette commande. Ces 20 000 ins-
tructions vont s’exécuter en 0,000 020 seconde, ce qui
laisse pendant les opérations manuelles (ou plus exacte-
ment digitales) un temps inoccupé de 0,249 980 seconde,
disponible pour l’exécution de 249 980 000 instructions
appartenant à d’autres programmes.

— De la même façon, nous voyons que les 10 000 instructions
nécessaires pour envoyer le curseur en bout de ligne vont
laisser pendant le délai de 0,02 seconde que nous nous
sommes imposé pour le confort de notre utilisateur bien-
aimé un temps libre suffisant pour exécuter 19 990 000
instructions au profit d’autres programmes, dits « pro-
grammes concomitants » (en anglais concurrent, ou si
l’on veut concurrents pour l’accès au temps de proces-
seur).

3.3 Notion de processus
De la section précédente nous pouvons déduire la notion de pro-

cessus : le rôle du système d’exploitation sera de distribuer harmo-
nieusement le temps disponible (de façon pléthorique semble-t-il
d’après l’exemple ci-dessus) entre différents programmes en train
de s’exécuter « pseudo-simultanément ». Lorsque l’on considère des
programmes sous l’angle de leur concurrence pour l’accès au temps
du processeur, nous les appellerons des processus. L’arbitrage de la
répartition du temps entre les processus est la fonction fondamen-
tale du système d’exploitation, c’est une fonction, bien sûr, de « bas
niveau », qui relève des « couches basses ».

La capacité pour le système d’exploitation d’organiser le par-
tage des ressources entre plusieurs processus concomitants qui s’exé-
cutent en pseudo-simultanéité s’appelle la multiprogrammation.

Nous pouvons emprunter à Andrew Tanenbaum [126] la méta-
phore du pâtissier qui prépare deux gâteaux : le programme, c’est la
recette du gâteau, c’est la même pour les deux gâteaux, elle décrit
des actions qui, dans le livre de cuisine, sont à l’état abstrait. Le
processus, c’est la suite d’actions effectives qui va mener à la réa-
lisation d’un gâteau concret. Pour aboutir, le processus « gâteau
numéro 1 » doit se voir attribuer un certain nombre de ressources :
farine, œufs, sucre, un certain laps du temps du pâtissier, une cer-
taine période de disponibilité du rouleau à pâtisserie, une certaine
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durée de cuison dans le four. Certaines contraintes doivent être res-
pectées : le rouleau et la planche à pâtisserie doivent être affectés au
processus « gâteau numéro 1 » en même temps, et avant l’affecta-
tion du four. Nous supposerons que le four ne peut contenir qu’un
seul gâteau à la fois, de même que le processeur d’un ordinateur ne
peut exécuter qu’une instruction à la fois. Les œufs, le sucre et la
farine de gâteau 1 sont bien entendus distincts de ceux de gâteau 2.

Pour préparer ses gâteaux, le pâtissier a le choix entre deux
méthodes : préparer d’abord l’un, jusqu’à la fin du processus, puis
l’autre, ou bien mener de front la confection des deux gâteaux, en
se consacrant alternativement à l’un, puis à l’autre, ce qui permet-
tra par exemple de rouler la pâte de gâteau 1 pendant que celle
de gâteau 2 repose. La seconde méthode permettra sans doute de
servir plus rapidement le client du second gâteau, sans trop retar-
der la livraison du premier, mais il y faudra plus d’organisation et
de coordination. Ainsi, lorsque le pâtissier passera du gâteau 1 au
gâteau 2, il faudra qu’il note (ne serait-ce que dans sa mémoire)
certaines informations sur l’état du processus gâteau 1 : a-t-il déjà
mis du sucre, ou pas ? Ce qui revient à cocher au crayon à quel
endroit du texte de la recette il s’est interrompu dans le processus
gâteau 1 pour passer au processus gâteau 2.

En procédant ainsi, le pâtissier réalise deux gâteaux en « pseudo-
simultanéité », ce qui permettra à ses deux clients d’être servis à
temps pour le dessert.

Nous avons déjà vu à la page 33 un moyen qu’ont les ordi-
nateurs de noter où ils en sont dans un processus : le compteur
ordinal, ou compteur de programme, nommé en abrégé PC (pro-
gram counter) 3, qui indique à chaque pas du programme l’adresse
de l’instruction suivante à exécuter, et qui souvent fait partie du
mot d’état de programme. Eh bien le PC sert aussi à cela : pour
savoir où on en est dans le processus gâteau 1 au moment où on va
l’abandonner pour s’occuper de gâteau 2, on note quelque-part la
valeur du PC. Nous entrerons plus en détail dans la description de
ces mécanismes, plus particulièrement aux sections 3.7 et 3.11, ce
qui précisera notamment la position de ce quelque-part où est notée
la valeur du PC.

3 Pour les processeurs Intel l’appellation est « eip » comme extended instruc-
tion pointer.
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Nous poursuivrons l’étude de cette notion centrale qu’est le pro-
cessus à la section 3.7 p. 54 ci-dessous.

3.4 Réification du calcul
Nous avons vu à la section 2.3 que les deux principes à la clé de

l’architecture de von Neumann étaient l’exécution séquentielle et le
partage d’une mémoire unique pour les instructions et les données
du calcul. Cette réunion du programme et des données permet de
considérer le programme comme de l’information, au même titre
que les données, et cela a des conséquences énormes en termes de
raisonnement sur les programmes, de transformations appliquées à
des programmes par d’autres programmes, de traduction de pro-
grammes, pour tout dire cela permet le concept de programme.

Mais avant que la pensée en son mouvement réunisse données et
programme elle avait dû apprendre à les distinguer. En effet pour le
mathématicien traditionnel la question de cette distinction n’existe
pas, c’est un problème qui n’a pas lieu.

L’idée de réification du processus de calcul apparaît avec Bab-
bage, dont la machine analytique devait comporter une unité de
contrôle constituée de cylindres à picots, une unité de calcul (le
« moulin »), une mémoire centrale (le « magasin »), un système
d’entrées-sorties de données sur carton perforé emprunté aux orgues
de barbarie, et enfin un dispositif de circulation de données par
tringles à crémaillère. Incidemment, nous voyons ici une autre idée
fondamentale de Babbage, la distinction entre unité de contrôle
et unité de calcul, la première supervisant l’exécution des opéra-
tions de la seconde, ce qui permet d’assurer un de nos postulats de
départ : en fonction du résultat d’une opération de calcul, l’unité
de contrôle pourra rompre la séquence d’exécution des instructions
pour commander un branchement vers une instruction située plus
loin dans le texte du programme, ou au contraire un retour en ar-
rière pour répéter une séquence déjà effectuée.

Par données enregistrées sur carton perforé nous entendons
aussi les programmes, et Lady Ada Lovelace, fille du poète By-
ron, mécène de Babbage et d’autres hommes de science anglais tels
que Faraday et figure intellectuelle importante de son époque, a
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rédigé les premiers textes de programmes de l’histoire. C’est en son
honneur que le langage de programmation Ada a été ainsi nommé 4.

Les logiciens de la première moitié du XXe siècle abordent le
problème de la réification de façon plus abstraite, sur les traces de
Leibniz, par les systèmes formels. Kurt Gödel et à sa suite Alan Tu-
ring avaient dû inventer des notations pour désigner des procédures
effectives, les transformer, leur faire subir des traitements. Alonzo
Church réunit ces idées en un formalisme qui aujourd’hui encore
satisfait théoriciens et praticiens de la programmation, le λ-calcul.
En 1956 John MacCarthy élabore à partir du λ-calcul un langage de
programmation, LISP, pour lequel il implémente à partir de 1958
un traducteur sur l’IBM 704.

Le λ-calcul se distingue des autres notations mathématiques
en ceci que les fonctions y sont des objets comme les autres,
susceptibles d’être traités comme des variables d’autres fonctions
ou comme des termes d’expressions, des λ-termes dans des λ-
expressions. Pour cette raison LISP est appelé un langage fonc-
tionnel, ou encore un langage applicatif, puisqu’aussi bien le propre
d’une fonction est de pouvoir être appliquée à des arguments.

3.5 Notion de sous-programme
À ce stade de l’exposé il convient d’exposer une notion d’une

importance théorique et pratique cruciale, la notion de sous-
programme, par quoi il est possible de diviser la difficulté de ré-
daction d’un programme en le découpant en plusieurs programmes
plus simples.

4 La genèse de ces programmes met en scène un autre personnage fameux,
l’ingénieur et mathématicien italien Luigi Menabrea, futur premier ministre
de son pays, qui publia en 1842 (en français ; il était natif de Chambéry,
mais c’est sans doute le rôle prééminent du français dans le monde ma-
thématique qui a déterminé le choix de cette langue ; incidemment, Leibniz
écrivait aussi en français) le premier article sur les travaux de Babbage.
Babbage avait demandé à Ada de les traduire en anglais ; c’est au cours de
ce travail de traduction et d’additions qu’Ada commença à écrire des pro-
grammes destinés à résoudre différents problèmes d’analyse mathématique.
Lorsque le langage machine de Babbage se révélait trop peu maniable pour
un certain problème, elle en demandait la modification. Une abondante lit-
térature est maintenant disponible sur ce sujet passionnant, y compris en
édition française.
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Un programme significatif représente un texte d’une longueur
respectable (par exemple 10 000 lignes), et il faut organiser ce vo-
lume d’information pour que les humains qui l’écrivent et le mo-
difient puissent s’y retrouver. Un moyen très général et simple
est d’avoir un programme principal qui joue en quelque sorte le
rôle de table des matières et qui transfère le contrôle à des sous-
programmes chargés de telle ou telle fonction particulière, eux-
mêmes découpés en sous-programmes plus petits, etc. Ce transfert
de contrôle est nommé « appel de sous-programme » (ou de fonc-
tion, ou de procédure, voire de méthode, ces mots désignent des
objets similaires dans le contexte envisagé ici). Il faut garder à l’es-
prit qu’il s’agit essentiellement d’organiser l’information constituée
par le texte du programme à l’usage du lecteur humain ; une fois
traduit en langage machine il restera une suite monolithique de
0 et de 1.

Quand un programme appelle un sous-programme 5 il doit lui
transmettre des informations : supposons que je dispose d’un sous-
programme pour le calcul du cosinus d’un angle ; je vais l’utiliser
chaque fois que dans mon travail j’aurai un angle dont j’ai besoin de
connaître le cosinus ; il faudra que je transfère au sous-programme
la valeur de l’angle, c’est l’argument ou le paramètre de mon sous-
programme ; il faut aussi que le sous-programme connaisse deux
autres choses, l’adresse à laquelle transférer le contrôle quand il
aura fini, dite adresse de retour, et l’adresse où déposer le résultat
afin que le programme appelant puisse en prendre connaissance.

Un sous-programme peut être écrit par la même personne que
le programme principal, et ils seront assemblés en un tout par un
programme spécial, l’éditeur de liens. Un progamme écrit et compilé
par nous utilise en fait d’autres programmes fournis par le système
d’exploitation, par exemple pour communiquer avec le système, ou
par le compilateur. Ces programmes sont dans des bibliothèques,
qui sont des fichiers qui contiennent des programmes déjà tout prêts
à l’usage. Au moment de l’édition de liens, soit ils sont inclus dans
le fichier exécutable (édition de liens statique), soit l’éditeur de liens
place dans le fichier exécutable une référence vers leur emplacement
dans une bibliothèque partageable (édition de liens dynamique) et
c’est au moment du chargement que les références qui permettent la

5 Incidemment tout programme est un sous-programme, le « programme prin-
cipal » est appelé par le système d’exploitation auquel il rend la main en se
terminant.
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liaison entre ces différents éléments de programmes seront établies
par un programme ad hoc nommé chargeur ou, par exemple sous
Linux, interpréteur de programmes.

Observons qu’isoler une fonction particulière dans un sous-
programme qui sera désigné par un nom particulier (par exemple
sinus pour le programme de calcul du sinus d’un angle) revient à
créer une méta-instruction qui enrichit notre langage de program-
mation. Les langages issus du λ-calcul tels que LISP et Scheme se
prêtent particulièrement bien à ce processus d’enrichissement par
abstraction de fonctions.

3.6 Points de vue sur les programmes
Nous commençons à avoir une idée de ce qu’est un programme :

arrêtons-nous sur les différentes façons de l’envisager :
— Comme la description d’un algorithme sous une forme exé-

cutable en machine : c’est le point de vue du programmeur,
que nous avons principalement envisagé jusqu’à maintenant.

— Comme de l’information sous forme de données en mémoire :
c’est le point de vue métalinguistique de l’auteur de compila-
teur, qui doit traduire le texte du programme vers un langage
de plus bas niveau et, ultima ratio, en langage machine.

— Comme un processus en cours d’exécution et qui à ce titre
utilise les ressources de l’ordinateur : mémoire, temps de
processeur, dispositifs d’entrée-sortie ; c’est principalement
le point de vue du système d’exploitation. Inversement, le
processus peut être vu comme le contexte d’exécution du
programme.

— Enfin le programme a une existence matérielle sous la forme
d’un fichier binaire exécutable stocké quelque part sur une
mémoire auxiliaire : c’est un point de vue que nous dévelop-
perons à la section 3.10 et au chapitre 5.

3.7 Vision dynamique du programme : le
processus

Le programme, du point de vue du système, est une entité ac-
tive qui consomme des ressources, et qui pour les obtenir entre en
concurrence avec d’autres demandes. Le programme vu sous cet
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angle est appelé un processus (notion introduite ci-dessus à la sec-
tion 3.3 p. 49), process en anglais (le terme tâche, task en anglais,
est parfois employé, dans les sources du noyau Linux par exemple).
Ainsi, si à un instant donné quinze personnes utilisent l’éditeur de
texte Emacs sur le même ordinateur, il y aura quinze processus
différents, même s’ils partagent la même copie du programme en
mémoire (rappelons-nous la métaphore du pâtissier et des gâteaux,
ci-dessus page 49), qui nous a permis d’introduire cette notion de
processus).

Le système d’exploitation (operating system, OS) est un pro-
gramme qui arbitre les demandes de ressources des différents pro-
cessus et les satisfait en se conformant à une stratégie. La stratégie
mise en œuvre par le système vise à satisfaire plusieurs impératifs :

— assurer le fonctionnement correct de l’ordinateur, et donc du
système lui-même : une allocation incohérente de ressources
cruciales comme le temps de processeur ou la mémoire peut
provoquer un blocage ou un arrêt complet du système ;

— distribuer les ressources de telle sorte que tous les proces-
sus « correctement configurés » en reçoivent une allocation
suffisante pour s’exécuter « normalement » ;

— corollaire des deux points précédents : empêcher qu’un pro-
cessus « pathologique » n’accapare des ressources cruciales
et ne réduise les autres à la « famine » ;

— assurer à chaque processus la jouissance paisible des res-
sources qu’il leur a allouées, et pour cela établir une protec-
tion étanche entre les domaines des différents processus, tout
en leur permettant de communiquer entre eux s’ils ont été
programmés à cet effet. En d’autres termes, c’est au système
d’exploitation que revient d’assurer la sécurité de l’ensemble
du système informatique.

Le processus réunit deux types d’attributs : certains sont de na-
ture plutôt statique, ce sont les ressources utilisées (espace mé-
moire, fichiers ouverts), et d’autre plutôt dynamiques, c’est essen-
tiellement ce que nous pouvons appeler un « fil » d’exécution pour
un programme, au sens où l’on dit « le fil de la conversation ». Une
tendance récente des architectes de systèmes vise à séparer les deux
types d’attributs, en considérant le processus comme un ensemble
de ressources qu’utilisent un ou plusieurs fils d’exécution. L’ambi-
guïté du pluriel de fil en français nous conduit à conserver le terme
anglais thread plutôt que de recourir à la solution bancale activité
(qui subsiste sans doute ici ou là dans ce livre). Nous étudierons
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dans ce chapitre le processus au sens classique. L’étude des threads
nécessite l’examen préalable des différents types de ressources à
partager, elle trouvera sa place au chapitre 10 page 352.

3.8 Attributs du système d’exploitation
Quelles doivent être les caractéristiques d’un système d’exploi-

tation, propres à mettre en œuvre la stratégie décrite ci-dessus ?
Avant de répondre trop hâtivement à cette question il convient de
s’armer de relativisme. Le système d’exploitation des gros ordina-
teurs centralisés qui ont connu leur apogée pendant les années 1970
ne peut sans doute pas ressembler à celui qui habite dans votre
téléphone portable. Moyennant quoi l’examen des systèmes pro-
duits du milieu des années 1960 à 2018 révèle une grande stabilité
des idées qui ont guidé les réponses aux questions de la section
précédente malgré une grande variété de styles de réalisation et
d’interfaces personne–ordinateur. C’est sans doute qu’il n’est pas si
simple d’imaginer d’autres solutions, ou bien que celles qui se sont
dégagées à l’issue des premières expériences se sont révélées assez
satisfaisantes dans une grande variété de contextes.

3.8.1 Mode d’exécution privilégié
De ce qui précède découle que le système d’exploitation doit

pouvoir faire des choses que les programmes ordinaires ne peuvent
pas faire (les programmes ordinaires ne doivent pas pouvoir faire
les mêmes choses que le système). Ceci est généralement réalisé par
le processeur, qui distingue deux modes d’exécution des instruc-
tions : le mode privilégié et le mode normal. Certaines opérations
ne sont accessibles qu’au mode privilégié. Nous verrons que cer-
tains systèmes ont raffiné cette hiérarchie de modes d’exécution
avec plusieurs niveaux de privilèges. Le mode privilégié est aussi
appelé mode superviseur, ou mode noyau.

3.8.2 Contrôle des programmes
Lorsque l’on veut exécuter un programme sur un ordinateur

piloté par un système d’exploitation, c’est à lui que l’on en demande
le lancement. Nous décrirons ce processus plus en détail à la section
3.10 ci-dessous.
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3.8.3 Contrôle de l’activité de tous les processus
À partir du moment où le système, premier programme à s’exé-

cuter après le démarrage de l’ordinateur, s’est octroyé le mode
d’exécution privilégié, et comme c’est lui qui va lancer les autres
programmes, il lui est loisible de leur donner le niveau de privilèges
qu’il juge nécessaire, et qui sera sauf exception le mode normal. Il
peut également interrompre un programme en cours d’exécution,
il contrôle les communications entre processus et empêche toute
promiscuité non désirée 6.

3.8.4 Monopole d’attribution des ressources
C’est le système et lui seul qui attribue aux différents processus

les ressources dont ils ont besoin, mémoire, temps de processeur,
accès aux entrées-sorties. En effet sans ce monopole plusieurs enti-
tés pourraient rivaliser pour l’octroi de ressources, de quoi pourrait
résulter une situation de blocage. Même avec le monopole du sys-
tème les situations de blocage entre processus peuvent advenir, mais
elles sont plus rares et plus souvent solubles par le système. À titre
d’illustration nous allons décrire une situation classique d’interblo-
cage, l’ « étreinte fatale ».

Étreinte fatale

Un groupe de processus P1, P2, ... Pn est dit en situation
d’étreinte fatale si chaque processus Pi est bloqué en attente d’une
ressource détenue par un processus Pj différent. Comme aucun pro-
cessus n’est en mesure de progresser dans son exécution, aucun
ne pourra atteindre le point où il libérerait la ressource attendue
par un autre, et la situation est donc fatale, sauf si une entité exté-
rieure est en mesure d’intervenir pour interrompre un des processus
en espérant débloquer tous les autres en chaîne. Le diagramme du
tableau 3.1 illustre le phénomène avec deux processus seulement.

6 L’anthropomorphisme débridé de cet alinéa et d’autres à venir peut choquer :
le système bien sûr ne désire ni ne juge ni ne s’octroie quoi que ce soit. Les
algorithmes écrits par son concepteur et les paramètres qui leur sont fournis
sont les seuls déterminants des mécanismes en jeu. Néanmoins ces façons
de parler allègent l’expression des périphrases qu’il faudrait sans cesse y
introduire. Nous demandons au lecteur d’imaginer leur présence.
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Processus P1 Processus P2
... ...
Allocation de la ressource A ...
... Allocation de la ressource B

... ...
Tentative d’allocation de la ...
ressource B : échec, blocage ...
... ...
... Tentative d’allocation de la
... ressource A : échec, blocage
... ...
Libération de la ressource A : ...
hélas P1 n’arrivera jamais là. ...
... ...
... Libération de la ressource B :
... P2 n’y arrivera pas.

Table 3.1 – Étreinte fatale (l’axe du temps est vertical de haut en bas)

3.8.5 Contrôle de la mémoire
De toutes les ressources, la mémoire est la plus cruciale, sans

mémoire aucune information ne peut exister dans l’ordinateur, et
bien sûr le système a le monopole de son allocation, de sa protection
et de sa libération. Rien ne serait plus grave que l’empiètement d’un
processus sur une zone mémoire allouée à un autre, et c’est ce qui
arriverait sans une instance unique de contrôle.

Dans le cas de la multiprogrammation (voir section 3.2) le par-
tage de la mémoire entre les processus est une fonction essentielle
du système d’exploitation.

3.8.6 Contrôle des entrées-sorties
L’accès aux dispositifs d’entrée-sortie est un type de ressource

parmi d’autres, et à ce titre le système doit en posséder le contrôle
exclusif, quitte à déléguer ce contrôle à un processus dans certains
cas particuliers. La règle générale est qu’un processus qui veut ef-
fectuer une opération d’entrée-sortie (recevoir un caractère tapé
sur le clavier, afficher un caractère à l’écran, écrire un bloc de
données sur disque...) adresse une demande au système, qui réa-
lise l’opération pour son compte. Ainsi est assuré le maintien de
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la cohérence entre les multiples opérations, et évitée l’occurrence
d’étreintes fatales. Comment le système d’exploitation s’y prend-il
pour orchestrer le fonctionnement coordonné de multiples appareils
d’entrée-sortie sans conflits ni perte de temps ? Nous le verrons plus
loin.

Comme conséquence (ou contre-partie) de ce monopole des
entrée-sorties, le système en procure aux autres processus une vue
abstraite et simplifiée.

3.8.7 Contrôle du temps
Le système maintient une base de temps unique pour tous les

processus et fournit des services de gestion du temps aux processus
qui le demandent : estampillage, chronologie, attente, réveil...

3.8.8 Contrôle de l’arrêt et du démarrage de l’ordinateur
Nous savons déjà que le système d’exploitation est le premier

programme à recevoir le contrôle lors du démarrage de la machine.
Il doit aussi recevoir le contrôle de l’arrêt de l’ordinateur, du moins
quand c’est possible. Lorsqu’il reçoit une commande d’arrêt, le sys-
tème veille à terminer les entrées-sorties en cours et à arrêter pro-
prement les processus encore en cours d’exécution. Quand cela n’est
pas fait, par exemple lors d’une coupure de courant, certains sup-
ports de données externes peuvent rester dans un état incohérent,
avec le risque de destruction de données.

3.9 Notion d’appel système
Pour mettre en œuvre les principes énumérés ci-dessus le sys-

tème d’exploitation reçoit le monopole de certaines opérations, dites
opérations privilégiées : allouer des ressources, déclencher et contrô-
ler des opérations d’entrée-sortie, d’autres que nous verrons ulté-
rieurement. Mais les programmes ordinaires risquent d’être singu-
lièrement limités si par exemple ils ne peuvent pas faire d’entrées-
sorties : il n’y aurait par exemple plus de logiciel de traitement de
texte possible parce qu’il ne serait autorisé ni à recevoir le texte
frappé au clavier par l’utilisateur, ni à l’afficher à l’écran, ni à l’im-
primer. Et nous savons bien qu’il existe effectivement des logiciels
de traitement de texte qui font tout cela. Comment ? Je vais vous
le narrer.
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Lorsqu’un processus ordinaire a besoin d’effectuer une opération
privilégiée il demande au système d’exploitation de la réaliser pour
son compte, et éventuellement de lui renvoyer le résultat. Cette
demande de service est nommée un appel système. Les opérations
privilégiées sont considérées comme autant de primitives du sys-
tème d’exploitation, qui peuvent être invoquées par les programmes
ordinaires pourvu qu’ils soient dotés des autorisations adéquates.
Signalons par exemple, pour Unix :

— fork, pour créer un processus ;
— kill, pour détruire un processus ;
— exec, pour charger un programme en mémoire ;
— signal, qui permet à un processus de signaler un événement

à un autre processus ;
— read, pour lire des données ;
— write, pour écrire des données ;
— brk, pour allouer ou libérer une zone de mémoire dynami-

quement.

3.10 Lancement d’un programme
Nous prendrons l’exemple du système Unix. Unix distingue net-

tement les notions de processus, considéré comme le contexte d’exé-
cution du programme, et le programme lui-même, constitué du
texte exécutable en langage machine. Le lancement de l’exécution
d’un programme comportera donc deux opérations : la création d’un
processus par l’appel système fork et le chargement par l’appel sys-
tème exec du programme qui va s’exécuter dans le contexte de ce
processus. exec est une forme générale parfois spécialisée sous le
nom execve.

Nous allons décrire les événements qui se déroulent après l’amor-
çage du système et le démarrage du noyau qui ont été décrits p. 37.
Nous prendrons l’exemple d’Unix, qui crée des processus avec l’ap-
pel système fork. fork procède par clonage : le processus fils reçoit
au départ une copie de l’environnement du processus père, et c’est
exec qui va constituer ensuite son environnement propre.

Au commencement, le noyau lance le premier processus qui
se déroule en mode utilisateur et dans l’espace mémoire réservé
aux utilisateurs : il s’appelle init. init lance par l’appel système
fork divers processus système utilitaires, puis (toujours par fork)
une copie de lui-même associée à chaque terminal destiné aux
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connexions des utilisateurs. Ces clones d’init vont déclencher la
procédure d’identification par nom identifiant et mot de passe des
utilisateurs qui se connectent 7. Une fois l’identité authentifiée, le
programme login utilise l’appel système execve pour charger en
mémoire un interpréteur de commandes de l’utilisateur, ce que l’on
nomme un shell. Le shell va prendre en mémoire la place de login
et permettre à l’utilisateur d’interagir avec le système d’exploita-
tion ; ce programme mérite que l’on s’y arrête un instant.

3.10.1 Shell
Cette section est consacrée au programme qui est l’intermé-

diaire principal entre l’utilisateur et le système Unix. C’est à la fois
un interpréteur de commandes qui permet le dialogue avec le sys-
tème et le lancement de programmes, et un langage de programma-
tion. On peut écrire en shell des programmes appelés shell scripts
constitués de séquences de commandes agrémentées de construc-
tions telles qu’alternative ou répétition, ce qui permet d’automa-
tiser des tâches répétitives. Ces programmes ne sont pas compilés
(traduits une fois pour toutes), mais interprétés, c’est-à-dire que le
shell traduit et exécute les commandes une à une comme si l’utili-
sateur les tapait sur son clavier au fur et à mesure. L’utilisateur a
ainsi l’illusion d’avoir affaire à une machine virtuelle dont le langage
machine serait celui du shell.

Incidemment, alors que Unix est né en 1969, le shell est plus an-
cien : il a été inventé en 1963 lors de la réalisation du système d’ex-
ploitation CTSS au Massachusetts Institute of Technology par Louis
Pouzin 8, ingénieur français qui s’est également illustré en 1970 à
la direction du projet de réseau Cyclades, où il inventa notamment
le datagramme. CTSS, dont le développement commença en 1961
sous la direction de Fernando Corbató au MIT sur IBM 709, puis
7090, fut un système d’une grande importance par le nombre de
notions, de techniques et de réalisations novatrices qu’il apportait.
Ce fut le premier système à temps partagé, c’est-à-dire qu’il per-
mettait l’usage simultané de l’ordinateur par plusieurs utilisateurs
qui entraient des commandes et lançaient des programmes depuis
des terminaux, en utilisant la disproportion entre le temps de calcul

7 Les programmes concernés sont getty et login
8 http://multicians.org/shell.html

http://multicians.org/shell.html
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de la machine et le temps de réaction humain telle qu’expliqué à la
section 3.2.1.

Après CTSS, Corbató prit la tête du projet MAC 9 10 qui donna
naissance au système d’exploitation Multics sur General Electric
GE-645, toujours au MIT. Ces systèmes ont inspiré les auteurs de
Unix, tant par ce qu’ils en ont retenu que par ce qu’ils en ont rejeté
d’ailleurs. Nous y reviendrons.

De CTSS le shell passa en 1964 à son successeur Multics, et de
là à Unix. L’utilisateur d’Unix a d’ailleurs le choix entre plusieurs
shells qui diffèrent par le style plus que par les fonctions. La sou-
plesse et la programmabilité du shell sont pour beaucoup dans la
prédilection que les développeurs professionnels ont pour Unix. Les
utilisateurs moins spécialisés ont tendance à lui préférer les inter-
faces graphiques interactives offertes par le Macintosh ou Windows,
et d’ailleurs disponibles également sous Unix grâce au système de
fenêtres X complété plus récemment par des environnements gra-
phiques tels que Gnome ou KDE. Mais pour un utilisateur quoti-
dien taper des commandes au clavier est plus rapide que de cliquer
avec une souris, et surtout ces commandes peuvent être enregis-
trées pour devenir des shell scripts, ce qui assure programmabilité,
mémorisation et reproductibilité des actions. Avez-vous déjà essayé
de vous rappeler quelle séquence de coups de souris avait produit
tel résultat subtil et ardemment désiré dans Word ? ou de dicter au
téléphone une telle séquence à un collègue (sauf dans le cas où il
est devant son écran et peut effectuer les actions au fur et à me-
sure de la dictée) ? Tandis qu’une série de commandes du shell, cela
s’envoie par courrier électronique de façon sûre.

Bref, muni du shell, rien n’est plus simple à l’utilisateur que de
lancer un programme : il suffit de taper le nom du fichier binaire exé-

9 Au cinquième étage du bâtiment du MIT qui l’abritait, MAC signifiait Mul-
tiple Access Computers, au neuvième étage, Man and Computer. L’initiateur
du projet était Robert M. Fano, professeur au MIT, sur une suggestion de
J. C. R. Licklider.

10 J. C. R. Licklider est une des personnalités dont l’influence sur le dévelop-
pement de l’informatique a été la plus forte. Il fut directeur de la division
Information Processing Techniques Office (IPTO) de l’ARPA (Advanced Re-
search Projects Agency), une agence du ministère américain de la défense,
dans les années 1960, et fut ainsi à l’origine de projets qui débouchèrent sur
les interfaces personnes–ordinateurs que nous utilisons aujourd’hui, ainsi que
sur la création de l’Internet. Ses deux articles les plus célèbres portent des
titres prophétiques : Man-Computer Symbiosis (1960) et The Computer as
a Communications Device (1968, en collaboration avec Robert Taylor).
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cutable qui en contient le texte en langage machine, éventuellement
suivi de quelques paramètres, puis un retour chariot et l’exécution
commence... Il y aura création d’un nouveau processus pour ce pro-
gramme, un processus en général fils du processus lié au shell. Unix
procure aussi des moyens de lancer l’exécution d’un programme en
l’absence d’un humain pour taper la commande, mais le principe
reste le même.

3.11 Synchronisation de processus, interruption
Nous avons dit que le système d’exploitation, avec l’aide de dis-

positifs appropriés du matériel, pouvait répartir le temps de pro-
cesseur entre plusieurs processus pseudo–simultanés. Ceci suppose
qu’un processus, à un instant donné, puisse être dans l’état actif, à
un instant suivant dans l’état dormant (en attente), puis encore à
un autre instant redémarrer, c’est-à-dire passer de l’état dormant
à l’état actif.

Nous pouvons concevoir qu’un processus actif se mette volon-
tairement à l’état dormant. En revanche le passage de l’état dor-
mant à l’état actif suppose l’intervention du système d’exploitation
ou d’un autre processus pour réveiller le processus endormi. Com-
ment cela peut-il se passer ? Nous allons pour l’exposer prendre un
exemple particulièrement significatif et qui découle de la section 3.2
ci-dessus : le déroulement d’une opération d’entrée-sortie, lecture ou
écriture sur support externe.

3.11.1 Demande d’entrée-sortie
Les opérations d’entrée-sortie, nous l’avons vu, sont des opé-

rations privilégiées, du monopole du système d’exploitation. Lors-
qu’un logiciel veut effectuer une entrée-sortie il doit effectuer un
appel système. Pour réaliser cette opération d’entrée-sortie (univer-
sellement désignée par IO, comme input-output, E/S en français),
plusieurs composants de l’ordinateur et du système entrent en jeu :

— Le programme effectue un appel système.
— Le système exécute un programme spécial, dit pilote de pé-

riphérique (driver), qui transmet la demande au contrôleur
de périphérique. Le contrôleur est un circuit de commande
du périphérique physique, qui dans le cas des disques durs
est un véritable petit ordinateur spécialisé doté de mémoire
pour le stockage des données en transit et de capacités de
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multiprogrammation pour conduire plusieurs disques simul-
tanément.

— Le périphérique physique effectue l’action réelle : lire, écrire,
enregistrer, imprimer, émettre un son... Puis il prévient le
contrôleur quand il a fini en émettant un signal particulier
sur un fil particulier. La durée de l’action du périphérique
mécanique, nous l’avons vu, est beaucoup plus longue que
toutes les actions des composants électroniques : de l’ordre
de 100 000 fois plus longue pour une écriture sur disque.

Comment cela finit-il ? Nous allons le voir. Le diagramme des
opérations est décrit par la figure 3.1.

...

...

...

mise en attente sur drapeau
...
...
...
réveil
le programme redevient
exécutable

_
_
_
travail d’E/S
_
_
fin d’E/S

commande d’E/S
_

Programme Contrôleur d’E/S
...
...
...

...

lancement d’E/S

interruption d’E/S

Système

fin de traitement
d’interruption E/S

demande d’E/S

Figure 3.1 – Diagramme d’une opération d’entrée-sortie (E/S)

Le haut de ce diagramme correspond aux étapes initiales d’une
opération d’entrée-sortie, elles sont compréhensibles avec les no-
tions que nous possédons déjà :

— Le programme s’exécute normalement, puis il émet une de-
mande d’entrée-sortie (un appel système).

— Immédiatement après la demande d’entrée-sortie 11 le pro-
gramme se met volontairement en attente, en sommeil. La
mise en sommeil se fait par un appel système qui transfère le
contrôle au superviseur après avoir sauvegardé en mémoire
le contexte d’exécution du processus (PSW, registres).

11 Par immédiatement on entend « avant la fin de l’exécution de l’E/S par le
matériel », contrôleur et périphérique proprement dit, ce qui, nous l’avons
vu à la section 3.2.1, laisse au processeur largement le temps d’exécuter
quelques milliers d’instructions
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— Pour que cette mise en sommeil ne soit pas définitive il faut
prévoir un mécanisme de réveil. En effet un programme qui
s’est arrêté ne pourra pas se remettre en action spontané-
ment. On pourrait imaginer un hôtel où chaque client avant
de se coucher accrocherait à l’extérieur de sa chambre une
petite fiche où il aurait écrit l’heure à laquelle il souhaite être
réveillé et ce qu’il veut manger à son petit déjeuner. Au ma-
tin, l’employé d’étage effectue une ronde périodique dans le
couloir, consulte les fiches et réveille les clients dont le temps
de sommeil est expiré. Dans notre cas l’appel système (sleep
ou wait selon les cas) place à un endroit connu du système
les informations qui permettront, lorsque l’E/S sera termi-
née, de savoir quel processus réveiller et quelle information
lui donner. Sinon on ne saurait jamais établir le lien entre le
résultat de l’entrée-sortie et le programme qui l’avait deman-
dée, et celui-ci ne pourrait jamais reprendre son exécution.
Un tel ensemble d’informations est appelé une structure de
données. Son adresse est mentionnée par une toute petite
structure appelée, par exemple, bloc de contrôle d’événement
(ECB, Event Control Block) dans les systèmes OS/360.

— La demande d’entrée-sortie est prise en charge par le sys-
tème, qui s’empresse de la mettre en file d’attente. Sur
un système en multiprogrammation les demandes d’entrée-
sortie sont en effet multiples et il faut y mettre un ordre.

— La partie du système chargée de traiter les demandes
d’entrée-sortie va, plus tard, extraire notre demande de la
file et la traiter, soit en bref la transmettre au contrôleur,
qui la transmettra au périphérique physique. Et là commen-
cera le délai, incommensurablement long au regard de ce qui
précède, nécessaire à l’action elle-même.

3.11.2 Interruption de fin d’entrée-sortie
Puis l’entrée-sortie suit son cours, et viendra le moment où le pé-

riphérique (disque dur, clavier, écran...) aura fini son travail. Com-
ment le signaler au programme interrompu ? Celui-ci est dormant,
il ne peut recevoir d’information. Il faut donc passer par l’intermé-
diaire du système d’exploitation.

À l’issue du délai considérable durant lequel le périphérique a
travaillé, il envoie au contrôleur un signal pour le prévenir, quelques
informations qui constituent un compte-rendu d’exécution de la
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tâche, et éventuellement les données qui lui étaient demandées, si
par exemple il s’agissait d’une lecture de données sur un disque.
Voyons la suite des opérations, pour laquelle nous allons supposer
qu’il s’agit précisément d’une lecture sur disque.

— Quand le contrôleur a reçu la demande d’entrée-sortie, elle
contenait un certain nombre de renseignements, notamment
l’adresse de la zone de mémoire où il faut déposer les données
résultant de la lecture. Il place donc les données à l’empla-
cement convenu.

— Comment le contrôleur place-t-il les données en mémoire ?
Par où passent-elles ? Par le bus. Le bus comporte des lignes
de données et des lignes de signalisation (ou de commande).
Les lignes de signalisation permettent aux différents élé-
ments de l’ordinateur de coordonner leurs actions, d’échan-
ger des commandes ; les lignes de données leur permettent
d’échanger, donc, des données. Le contrôleur sait accéder à
la mémoire et sélectionner la bonne adresse.

— Une fois les données placées au bon endroit en mémoire, il
faut prévenir le processeur. À cette fin le contrôleur envoie
sur une ligne de signalisation particulière un signal qui va dé-
clencher une interruption du processeur. L’interruption est
un mécanisme capital pour la synchronisation des ordina-
teurs, nous allons en exposer le principe.

— Le signal d’interruption a deux effets :
— il interrompt, donc, le programme en cours d’exécution ;
— le PSW courant (cf. section 2.5 pour la définition du

PSW et du PC) est sauvegardé en mémoire et remplacé
par un nouveau PSW qui comporte une valeur de PC qui
pointe vers une section particulière du système, le super-
viseur d’interruption ; c’est donc ici que va se continuer
l’exécution.

— La première chose que fait le superviseur d’interruption
est de déterminer la nature de l’interruption. Ici le signal
lui donne la réponse : interruption d’entrée-sortie, mais il
y a d’autres types (interruption volontaire par appel sys-
tème, interruption déclenchée par l’horloge interne, inter-
ruption provoquée par une condition particulière de pro-
gramme comme dépassement de capacité numérique...). Il
se débranche donc à la section appropriée, le superviseur
d’interruption d’entrée-sorties.
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Le traitement des interruptions et le transfert du contrôle à la
section adéquate du superviseur ou du noyau sont des éléments de
l’architecture de l’ordinateur et du système d’exploitation cruciaux
pour les performances et les possibilités de l’ensemble. Les éléments
matériels et logiciels sont étroitement associés. Nous avons décrit
une réalisation possible. Il en existe d’autres, par exemple l’architec-
ture Intel IA-64 utilise un vecteur d’interruptions : chaque élément
matériel ou logiciel du système susceptible de déclencher une in-
terruption, et notamment chaque contrôleur de périphérique, est
associé à une structure de données résidant à une adresse en mé-
moire fixée au démarrage du système et qui contient elle-même
l’adresse de la section appropriée du superviseur. L’ensemble de ces
adresses constitue le vecteur d’interruptions. L’occurrence d’une in-
terruption provenant de tel contrôleur déclenche automatiquement
le transfert du contrôle à l’adresse correspondante, qui pointe sur
la section appropriée du superviseur. Ce dispositif, dit de vectori-
sation des interruptions, est apparu sur les ordinateurs PDP 11 de
Digital Equipment.

— Une fois le contrôle transféré au superviseur d’interruption
d’entrée-sortie, celui-ci retouve dans ses tables la référence
du drapeau associé à la demande d’entrée-sortie concernée,
par là il retrouve la structure de données qui la décrit, puis
le processus dormant qui l’avait émise.

— Le superviseur fait passer le processus émetteur de l’état
dormant à l’état dispatchable ou prêt, c’est-à-dire candidat
à redevenir actif, éligible pour l’exécution.

— Le superviseur d’interruptions passe ensuite la main à une
autre partie du système, l’ordonnanceur, ou programmateur
(en anglais scheduler).

3.12 Ordonnancement de processus
Les systèmes que nous envisageons permetttent la multi-

programmation, c’est-à-dire que plusieurs processus sont à un mo-
ment donné en concurrence pour disposer du processeur, dont on
rappelle qu’en vertu de l’architecture de von Neumann il exécute
une seule instruction à la fois 12. Pour permettre cette concurrence,

12 Rappelons aussi que tous les systèmes utilisés réellement aujourd’hui (26
avril 2018) sont conformes macroscopiquement à l’architecture de von Neu-
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aux deux sens du terme, commercial et étymologique, il faut que
le système soit capable de retirer le contrôle du processeur à un
processus pour le donner à un autre. La partie du noyau du sys-
tème qui fait cela est l’ordonnanceur ou programmateur (en anglais
scheduler).

L’ordonnanceur reçoit la main à un moment où tous les proces-
sus sont dans l’état d’attente. Certains sont prêts (éligibles) pour
l’exécution (dispatchable), c’est-à-dire qu’ils ne sont pas en attente
d’un événement tel qu’une fin d’entrée-sortie ou l’expiration d’un
délai, et qu’ils n’attendent que le feu vert pour recommencer à s’exé-
cuter. D’autres sont à l’état dormant, par exemple en attente sur
un drapeau. Le rôle de l’ordonnanceur est de sélectionner parmi les
processus prêts celui qui va être activé. La méthode de sélection
peut dépendre de plusieurs paramètres : délai d’attente déjà écoulé
pour chaque processus, niveau de priorité, etc. Puis l’ordonnanceur
passe la main au distributeur (en anglais dispatcher), qui remet ef-
fectivement en activité le processus sélectionné en restaurant son
contexte d’exécution (PSW, registres). C’est sur ce processus com-
plexe que s’appuie l’exemple de la figure 3.1.

Cette description du traitement d’entrée-sortie nous a amené à
préciser notre vision de la gestion des processus et à comprendre
le fonctionnement effectif de la multiprogrammation. Tout pro-
gramme réel interagit avec le monde extérieur par des entrées-
sorties ; ce faisant, nous venons de le voir, il se met en attente
d’un résultat d’entrée-sortie, et par là même il donne à l’ordon-
nanceur l’occasion de donner la main à un autre programme. Et
c’est ainsi que chaque programme s’exécute à son tour, en pseudo–
simultanéité avec les autres. Nous avons vu aussi le rôle fondamen-
tal des interruptions pour le fonctionnement de la multiprogram-
mation.

Nous comprenons aussi qu’un programme qui ferait beaucoup
de calculs et très peu d’entrées-sorties, par exemple un programme
qui devrait calculer et afficher la millionième décimale de π, risque-
rait de bloquer tous les autres parce qu’il ne rendrait jamais la main.
Pour parer une telle menace, plusieurs solutions sont envisageables.

mann, c’est-à-dire que les modifications qu’ils lui apportent ne modifient pas
substantiellement les conséquences que l’on peut tirer du principe d’exécu-
tion séquentielle.
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3.12.1 Stratégies d’ordonnancement
La solution d’ordonnancement la plus simple consiste à décou-

per le temps en tranches et à dire qu’aucun processus ne pourra
avoir la main pendant deux tranches de temps consécutives. Chaque
expiration d’une tranche de temps déclenche une interruption et
donne la main à l’ordonnanceur, qui peut ainsi éviter la monopoli-
sation du processeur par un programme gourmand.

Une autre solution consiste à affecter à chaque processus une
priorité. L’ordonnanceur donne toujours la main au processus prêt
(dispatchable) de plus haute priorité. Il suffit de donner une priorité
basse aux processus qui font peu d’entrées-sorties et une priorité
haute à ceux qui en font beaucoup, et dont on sait qu’ils vont se
mettre en attente « volontairement » souvent.

Il est possible de combiner toutes ces stratégies de répartition
du temps de processeur pour obtenir un système auto–régulé. Nous
aurons des tranches de temps et des priorités, qui de surcroît seront
variables dynamiquement. Un processus aura deux façons de s’inter-
rompre : soit « volontairement » en faisant une demande d’entrée-
sortie ou tout autre appel système suivi d’une mise en attente, soit
en atteignant la fin d’une tranche de temps. L’ordonnanceur se voit
attribuer une prérogative supplémentaire : les « bons » processus
qui se seront interrompus « volontairement » verront leur priorité
augmentée, les « mauvais » processus qui auront atteint la limite
d’une tranche de temps, manifestant par là une tendance néfaste à
la monopolisation, verront leur priorité diminuée, ce qui améliorera
la fluidité de la multiprogrammation. L’hypothèse sous-jacente est :
qui a fait des entrées-sorties, en refera ; qui a calculé, calculera. No-
tons néanmoins que ce dispositif n’implique pas de prédestination,
et qu’il laisse grande ouverte la porte de la rédemption.

3.12.2 Interruptions et exceptions
Nous avons examiné le cas particulier de l’interruption d’entrée-

sortie, qui est provoquée par un élément matériel extérieur au pro-
cesseur, indépendant du cadencement des instructions. C’est une
interruption asynchrone. Il existe par ailleurs des interruptions pro-
voquées par le processeur lui-même, par exemple lorsqu’il détecte
une condition anormale, ou simplement à la demande d’un pro-
gramme. Ces interruptions sont synchrones, parce que le processeur
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ne les produit qu’après avoir terminé l’exécution d’une instruction,
et elles sont aussi nommées exceptions.

3.12.3 Préemption
Ainsi que nous venons de le voir, le fonctionnement du pro-

cesseur est cadencé par des interruptions. Une interruption peut
survenir du fait de la terminaison d’une entrée-sortie, de l’expira-
tion de la tranche de temps de processeur allouée à un processus, de
l’occurrence d’une erreur du système ou du matériel, ou simplement
à la demande d’un processus, comme lors d’une demande d’entrée
sortie.

À chaque interruption, l’ordonnanceur prend la main. C’est
pour cela que les interruptions jouent un rôle si important dans
le fonctionnement du système. L’ordonnanceur examine la file d’at-
tente des processus prêts (éligibles) pour l’exécution (dispatchable),
comme déjà dit. Souvent, et même presque toujours, le déclenche-
ment d’une interruption procède d’un événement à la suite du-
quel cette file d’attente est modifiée : après une demande d’entrée-
sortie, le processus qui l’a émise, et qui était donc actif, entre dans
l’état non-prêt (dormant) ; au contraire, après la terminaison d’une
entrée-sortie, le processus qui en attendait le résultat redevient
prêt. Les interruptions sont les seules circonstances à l’occasion
desquelles un processus peut passer d’un état (prêt, non-prêt, actif,
terminé) à un autre.

Dans tous les cas, l’ordonnanceur examine la file d’attente sans
préjugé et donne la main au processus prêt de plus haute priorité,
sans respect pour les positions acquises. Il y a des exceptions : par
exemple, si le système est paramétré pour une stratégie d’ordon-
nancement par tranches de temps, et si le processus le plus priori-
taire vient d’épuiser la tranche précédente, la règle de répartition
interdit de lui rendre la main. Mais de façon générale, tout proces-
sus de haute priorité redevenu prêt prendra la main au processus
moins prioritaire qui s’exécutait jusqu’alors. On dit que le système
d’exploitation qui permet ce transfert de contrôle du processeur
est un système préemptif. Un vrai système d’exploitation doit être
préemptif.
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3.12.4 Systèmes non-préemptifs
Certains concepteurs de systèmes pour micro-ordinateurs ont

cru pouvoir faire l’économie de la préemption, qui suppose en ef-
fet beaucoup de complexité 13. Leur idée (dans les années 1980)
était que les utilisateurs de leur système n’utiliseraient qu’un seul
programme à la fois, et qu’il était donc inutile de gaspiller de la
mémoire pour implanter des mécanismes qui ne serviraient que si
l’on voulait faire deux choses à la fois, ou plus. En fait, ce raison-
nement est fallacieux : même si l’utilisateur ne lance que le logiciel
de traitement de texte, par exemple, dès qu’il veut imprimer il fait
deux choses à la fois, parce qu’il veut pouvoir continuer à taper son
texte pendant l’impression.

Dès que le micro-ordinateur est en réseau, les choses se corsent :
par définition, dès que l’on est en réseau on fait plusieurs choses à la
fois, le traitement local et les interactions avec le réseau. En outre,
les manifestations du réseau viennent de l’extérieur, donc par défi-
nition à un instant non prévu (on dit que ce sont des événements
asynchrones). Nous venons de voir un bon moyen de faire face à ce
type de situation : le traitement des interruptions. Mais justement
ces systèmes sans préemption ne disposent pas d’un vrai système
de traitement des interruptions. Du coup, ils s’en remettent à la
chance : l’utilisateur de traitement de texte, nous l’avons vu à la
section 3.2.1, n’utilise qu’un part infime du temps du processeur,
qui la plupart du temps est donc inactif ; la probabilité que l’in-
terruption en provenance du réseau survienne pendant une période
d’activité est infime ; chaque fois qu’il se met en attente d’un évé-
nement (par la fonction WaitNextEvent dans le cas de MacOS 9,
par exemple) le système accorde aux interruptions un certain dé-
lai pendant lequel elles pourront survenir impunément, parce qu’il
suppute que pendant ce délai rien ne se passera : le doigt de l’uti-
lisateur ne tapera ni ne cliquera. Si l’improbable conflit survient,
le système « se plantera », mais après tout cela n’arrivera pas trop
souvent et puisqu’il s’agit d’un ordinateur bon marché utilisé par
une seule personne, le client se fera une raison.

Les résultats de ce calcul mesquin ont bien sûr été catastro-
phiques. Avec le développement des réseaux, ces micro-ordinateurs
se sont vite trouvés dans des environnements plus complexes que

13 Les systèmes dont nous parlons sont essentiellement MS-DOS et les systèmes
à fenêtres qui reposaient sur lui.
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prévu, sur des réseaux de centaines ou de milliers de postes. Les
« plantages » ne survenaient plus tous les deux ou trois jours mais
deux ou trois fois par jour. Les clients ont commencé à utiliser des
logiciels plus exigeants, notamment les jeux, qui ont souvent des in-
terfaces graphiques très complexes et qui consomment énormément
de temps de calcul. Comme ce qui tenait lieu de système d’exploita-
tion était indigent, toutes les fonctions complexes ont été déportées
ailleurs, beaucoup dans les cartes graphiques, et le reste dans le
logiciel lui-même. Cela ne va pas trop mal tant qu’on utilise un
seul logiciel avec une seule carte graphique, mais il vient bien un
moment où il faut sortir de l’autisme et changer de logiciel : et là,
en général, cela se passe assez mal.

Du fait de la déficience du système d’expoitation, c’est au lo-
giciel de traitement de texte, par exemple, d’assurer lui-même les
fonctions qui normalement incomberaient à celui-là, comme l’allo-
cation de mémoire, les entrées-sorties, et surtout la réaction aux
interruptions asynchrones ; le logiciel devient énorme et complexe,
mais en plus il doit espérer que les autres logiciels auront la même
vision du monde que lui et adopteront les mêmes conventions, sinon
il y aura des conflits. Par exemple, chaque logiciel gère lui-même ses
entrées-sorties, et comporte une heuristique pour estimer le temps
que cela va prendre ; il rend la main pendant ce délai afin qu’un
autre logiciel « en tâche de fond », comme on dit dans cet uni-
vers, puisse s’exécuter. En procédant ainsi, on commet deux actes
de foi : on espère que les autres logiciels ont des comportements
compatibles avec le sien, notamment pour rendre la main à l’issue
du délai supputé, et que le délai sera bien respecté, parce que si
l’entrée-sortie se termine inopinément plus tôt que prévu, c’est le
plantage assuré. Évidemment, si on achète tous ses logiciels chez le
même fournisseur, qui serait aussi le brillant concepteur du non–
système d’exploitation, on peut espérer limiter les risques...

J’ai lu des articles où ces bricolages étaient présentés par leurs
auteurs comme une nouvelle façon de concevoir les programmes,
plus sympathique et décontractée que l’ancienne méthode enca-
drée par des règles rigides. C’était de la programmation « orientée
vers les applications », avec des applications « coopératives ». Bref,
c’était cool et moderne, alors que les vieux systèmes d’exploitation
avaient bien l’air d’avoir été écrits par de sévères instituteurs du
XIXesiècle en blouse grise... Dans un monde où le client est le plus
souvent incompétent, ce genre de démagogie fonctionne assez bien,
et présenter ses déficiences comme des qualités peut marcher.
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Les systèmes qui ont succédé à ces réalisations discutables, Win-
dows NT, 2000, XP et la suite, sont dotés de mécanismes de pré-
emption et de traitement multi–tâches, mais comme il fallait bien
assurer la compatibilité avec la passé, les logiciels courants sont
toujours dotés de leurs excroissances palliatives censées corriger les
lacunes des systèmes d’exploitation, d’où de nouvelles sources de
conflits qui résultent désormais en écrans bleus, caractéristiques
des plantages de ces systèmes (voir aussi le chapitre 11 consacré à
la micro-informatique). Le comble de l’horreur est atteint avec les
pilotes de cartes graphiques, grandes sources de catastrophes...

3.12.5 Synchronisation de processus et sections critiques
Nous sommes bien contents d’avoir un système préemptif, mais

si nous réfléchissons un peu nous voyons apparaître quelques in-
convénients. Un processus qui s’exécute peut à tout moment être
interrompu, même en plein milieu d’une instruction en cas d’inter-
ruption asynchrone (et les interruptions asynchrones comportent,
dans le cas des multi-processeurs, les interruptions par un autre
processeur accédant à la mémoire commune), le noyau du système
d’exploitation va prendre la main pour traiter l’interruption, et à
l’issue de ce traitement ce sera peut-être un autre processus qui
recevra la main.

Ce risque d’être interrompu à tout instant impose des pré-
cautions. Les éléments essentiels du vecteur d’état du programme
doivent pouvoir être sauvegardés, afin de permettre la reprise du
traitement. Ces éléments sont essentiellement la valeur du PSW,
qui permet notamment de retrouver l’instruction en cours au mo-
ment de l’interruption, et le contenu des registres, qui permet de
retrouver les différentes zones de mémoire utilisées. Comme nous
le verrons au chapitre 4, dans un système à mémoire virtuelle mo-
derne chaque processus dispose de son espace de mémoire virtuelle
privé, ce qui simplifie les choses. Cette opération de sauvegarde du
contexte d’exécution du processus interrompu et d’initialisation du
contexte d’exécution du processus promu s’appelle commutation de
contexte (context switch). Selon les processeurs et les systèmes, ce
peut être une opération figée dans le matériel et invoquée par une
instruction spécifique unique, ou une séquence d’instructions répé-
tées comme un refrain au début de chaque section de programme,
comme dans l’OS 360/370. Nous avons déjà rencontré ce mécanisme
aux sections 2.5 et 3.11.1.
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Mais même si ces précautions ont été prises, il y a des opérations
au cours desquelles une interruption, suivie ou non d’une commuta-
tion de contexte, risque d’avoir des conséquences catastrophiques.
La séquence des instructions qui constitue le programme d’une telle
opération est appelée section critique. Les sections critiques sont gé-
néralement dans le noyau du système d’exploitation. Le cas le plus
courant est celui d’une allocation de ressource matérielle, ce qui
suppose la mise à jour de tables : dans le cas de l’allocation d’une
zone de mémoire réelle, la table des cadres de pages (ici nous an-
ticipons sur le chapitre 4), dans le cas d’une écriture sur support
externe, la table des blocs libres sur le disque et la i-liste, qui décrit
la cartographie des fichiers et des blocs qui leur sont alloués sur le
disque (ce sera vu au chapitre 5).

Lorsqu’un processus veut acquérir une ressource contrôlée par
le noyau, il émet un appel système. Le traitement de cet appel sys-
tème va résulter en l’allocation de la ressource, ce qui se traduit
en mémoire par la modification des tables qui décrivent cette res-
source. L’exécution de la séquence des instructions du noyau qui
effectuent ce traitement est appelée chemin de contrôle du noyau.
Tout ou partie du chemin de contrôle est une section critique.

La programmation d’une telle section critique impose une pro-
tection particulière pour préserver l’intégrité des données, il faut
garantir une des deux conditions suivantes :
Assertion 1 : Aucune interruption ne pourra avoir lieu pendant le

déroulement de la section critique.
OU BIEN :

Assertion 2 : Si une interruption survient, elle peut avoir pour ef-
fet de rendre prêt un chemin de contrôle du noyau qui était
dormant, par exemple dans le cas d’une interruption de fin
d’entrée-sortie. De ce fait, le chemin de contrôle du noyau
qui était en train d’allouer des ressources à cet instant peut
perdre la main au profit du nouveau concurrent, peut-être
doté d’une priorité plus élevée. Il faut alors garantir que les
tables et les autres structures de données en cours de modifi-
cation ne pourront pas être modifiées par ce nouveau chemin
de contrôle.

C’est compliqué, et plusieurs méthodes peuvent être employées
selon les circonstances.

Nous avons introduit la notion de système préemptif, qui permet
aux processus de prendre la main à des processus moins prioritaires



Ordonnancement de processus 75

lorsqu’ils repassent à l’état prêt. Lorsqu’un processus émet un ap-
pel système et qu’il exécute des instructions du noyau, en mode
noyau (on dit aussi superviseur) donc, il n’est par construction pas
préemptible par un processus en mode utilisateur (qui exécute des
instructions ordinaires écrites par le commun des mortels). Mais
ne risque-t-il pas la préemption par un autre processus en mode
noyau ? Cela dépend du système. Les premières versions du noyau
Linux n’étaient pas préemptives, un processus en mode noyau ne
pouvait pas subir la préemption. Mais même un noyau non pré-
emptif doit tenir compte des interruptions et des systèmes multi-
processeurs. Les moyens d’assurer la véracité d’une de ces deux
assertions sont examinées ci-dessous.

Le noyau Linux version 2.4 a vu apparaître un « patch » déve-
loppé par Robert Love, destiné à le rendre préemptif. Le résultat
est une amélioration assez spectaculaire des temps de réponse des
processus. Le prix à payer est une complexité accrue, mais avec
l’avantage associé d’un code 14 de meilleure qualité, intrinsèque-
ment adapté aux multi-processeurs.

Atomicité des opérations

Le premier moyen qui vient à l’idée pour interdire la préemp-
tion d’un processus en section critique dans le noyau, c’est d’as-
surer l’ininterruptibilité de la section critique. Le moyen le plus
radical, c’est que cette section critique soit réduite à une instruc-
tion unique. Même cela ne suffit pas, puisqu’une instruction qui
consomme plusieurs cycles de processeurs (cas courant pour les pro-
cesseurs CISC 15 tels que le Pentium) peut être interrompue par une

14 Le terme code est employé ici dans l’acception de « texte du programme ».
On parle de code source pour désigner le texte du programme tel qu’il a été
écrit par le programmeur dans le langage de développement, le code objet
est le programme traduit en langage machine par le compilateur, le code
exécutable est le programme sous forme binaire auquel l’édition de liens a
ajouté tous les sous-programmes compilés séparément et les références aux
bibliothèques partagées nécessaires à l’exécution. On notera que les détrac-
teurs de l’informatique utilisent de façon péjorative la série de termes code,
coder, codage pour dévaluer l’activité de programmation en suggérant que
ce serait une activité triviale, l’application mécanique d’un code.

15 Les abbréviations CISC (pour Complex Instruction Set Computer), RISC
(pour Reduced Instruction Set Computer) et VLIW (pour Very Long Ins-
truction Word) désignent des classes dans la zoologie des processeurs, dont
la signification est donnée à la section 9.4.
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interruption asynchrone émise par un organe périphérique ou en
provenance d’un autre processeur sur un système multi-processeur.
Il faut donc que la section critique soit composée d’une instruction
unique sur un cycle unique. Là on est sûr que le système reste dans
un état où la section critique est exécutée soit totalement soit pas
du tout : cette propriété d’une opération est nommée atomicité, et
elle garantit que :

— si le système était dans un état cohérent avant l’opération ;
— si l’opération n’introduit pas d’incohérence ;
— le système est cohérent à l’issue de l’opération.
La solution répond parfaitement à l’énoncé, le problème est

qu’en un cycle de processeur on ne fait pas grand chose, et no-
tamment on n’accède pas à la mémoire principale, on ne peut donc
espérer effectuer de cette façon la mise à jour complexe de tables
d’allocation de ressources. En fait, il est seulement possible, au prix
d’une certaine virtuosité dans la conseption des circuits logiques,
de tester une position de mémoire (par exemple un registre du pro-
cesseur) qui représente un drapeau logique (0 libre, 1 verrouillé, par
exemple) et, dans le même cycle, si le test est favorable, d’en mo-
difier une autre. Cette instruction est généralement nommée TAS
(Test and Set). Un programme en langage C ne peut garantir l’ato-
micité d’une de ses expressions, parce que cela dépend de l’usage
qui sera fait du langage machine par le compilateur. Pour franchir
cet obstacle, le noyau Linux procure des fonctions destinées à faire
usage des possibilités « atomiques » du langage machine, nommé-
ment atomic_dec_and_test(v) et atomic_inc_and_test(v).

Les processeurs modernes disposent d’instructions éventuelle-
ment plus complexes mais qui assurent l’atomicité de façon brutale,
même dans le cas de multi-processeurs, en bloquant l’accès au bus
mémoire jusqu’à la fin de l’instruction.

Les opérations atomiques sont très limitées par leur concision,
mais elles peuvent servir de base à des mécanismes plus complexes
de protection de sections critiques, comme ceux que nous allons
examiner ci-dessous.

Masquage des interruptions

Tous les processeurs courants possèdent un dispositif de mas-
quage des interruptions. Pour la gamme IBM 360 et ses successeurs,
il s’agit simplement d’un bit du PSW, pour les processeurs Intel ré-
cents un champ du registre eflags. Ici encore, nous disposons d’un
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moyen radical de protection d’une section critique : aucune inter-
ruption ne peut se manifester tant que le drapeau est positionné.
Les limites de cette méthode tiennent à sa puissance même : pen-
dant que les interruptions sont masquées, tous les échanges entre
le processeur et les organes périphériques sont bloqués. De plus, il
est impossible de masquer les interruptions pendant une séquence
d’instructions qui risque elle-même de faire une demande d’entrée-
sortie, c’est-à-dire d’entrer dans un état dormant : le système ne
se réveillera jamais et restera gelé, le seul recours sera le bouton
RESET...

Verrouillage de la section critique

Quand il faut créer une section critique trop longue ou trop
complexe pour qu’il soit possible de la réaliser atomiquement, ou
de la protéger en masquant les interruptions, il faut recourir au
verrouillage par un procédé plus complexe. Il existe classiquement
trois familles de procédés, dont on peut démontrer qu’elles donnent
des résultats équivalents : les sémaphores inventés par Edsger Wybe
Dijkstra, les moniteurs dûs à C. Antony R. Hoare[58], les biblio-
thèques de fonctions.

Toutes les méthodes de verrouillage reposent sur des principes
communs. Un chemin de contrôle du noyau qui doit accéder, par
exemple, à une table d’allocation d’une ressource système doit au-
paravant acquérir un verrou pour cette table. Le verrou n’est rien
d’autre qu’une structure de données en mémoire : c’est purement
logique, il ne faut imaginer là aucun dispositif matériel qui ver-
rouillerait physiquement une zone de mémoire, ou un élément du
processeur, ou un périphérique. C’est-à-dire qu’il n’a d’efficacité
que parce que tous les chemins de contrôle susceptibles d’accéder
à la même ressource utilisent la même convention de verrouillage,
donc cherchent à acquérir le même verrou. En pratique, ils doivent
utiliser tous la même séquence d’instructions. Inutile de dire que
cette séquence est partie intégrante du noyau, et qu’il est vivement
conseillé de ne pas laisser les programmes en mode utilisateur accé-
der aux félicités du verrouillage... ce que s’empressent de faire, bien
évidemment, les applications destinées aux systèmes non préemp-
tifs, avec les résultats que chacun peut constater.

Dans son état le plus simple, le verrou se réduit à un bit : libre
ou occupé. Il peut avoir une structure plus complexe, et accéder
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ainsi au rang de sémaphore, qui confère les champs suivants (pour
le noyau Linux) :
count valeur numérique : si elle est supérieure à 0, la ressource est

libre, si elle est inférieure ou égale à 0 la ressource est occupée
et la valeur absolue de count est égale au nombre de chemins
de contrôle qui attendent pour y accéder ;

wait adresse de la file d’attente des processus 16 en attente d’accès
à la ressource ;

waking une variable dont la valeur sert à sélectionner dans la file
d’attente le prochain chemin de contrôle qui accédera à la
ressource, selon un algorithme dont nous dirons deux mots
ci-dessous.

Bref, le sémaphore est un verrou doté d’une valeur qui dit com-
bien de clients on peut laisser passer à la fois. Traditionnellement,
les sémaphores sont manipulés au moyen de deux opérations pri-
mitives mystérieusement nommées P et V, initiales de leurs noms
néerlandais 17, puisque œuvre d’E.W. Dijkstra. P est invoquée par
un processus qui cherche à accéder à la ressource, V par un proces-
sus qui la libère et laisse la place au suivant. Claude Kaiser, un des
auteurs de Crocus [37], m’a confié un procédé mnémotechnique pour
ne pas les confondre : P pour « Puis-je ? » et V pour « Vas-y ! ». Le
noyau Linux les a prosaïquement baptisées down (qui décrémente
count) et up (qui incrémente count).

Lorsqu’un processus invoque P avec en argument l’adresse d’un
sémaphore, la primitive décrémente le champ count du sémaphore
et examine son signe (les deux actions au moyen d’une unique ins-
truction atomique vue à la section 3.12.5, sinon un autre processus
pourrait tenter la même opération en même temps). Si count est
positif ou nul, le processus acquiert le contrôle du sémaphore, et
l’exécution continue normalement. Si count est négatif, le proces-
sus entre dans l’état dormant et est placé dans la file d’attente
désignée par wait.

Lorsque le processus qui contrôlait le sémaphore a fini d’utili-
ser la ressource correspondante, il invoque la primitive V. Celle-
ci incrémente le champ count et examine son signe (les deux ac-

16 Conformément à l’usage nous employons ici et dans les lignes qui suivent
« processus » à la place du fastidieux « chemin d’accès du noyau exécuté
pour le compte d’un processus » qui serait plus exact.

17 P est pour passeren, passer, et V pour vrijgeven, libérer.



Chronologie des premiers systèmes d’exploitation 79

tions au moyen d’une unique instruction atomique vue à la section
3.12.5, sinon un autre processus pourrait tenter la même opération
en même temps). Si count est positif, aucun processus n’attendait
la ressource, et l’exécution de V se termine. Sinon, elle incrémente
le champ waking (opération protégée par un verrou et le masquage
d’interruptions pour éviter toute concurrence) et réveille les proces-
sus de la file d’attente pointée par wait. Chaque processus réveillé
exécute alors la suite de P, qui contient une section critique pour
tester si waking est positif. Le premier à exécuter cette section cri-
tique décrémente waking et acquiert le contrôle du sémaphore, les
suivants trouvent waking négatif ou nul et se rendorment.

L’effet produit par l’invocation de P et de V dépend de la va-
leur initiale de count ; si elles est de 1, P et V réalisent l’exclusion
mutuelle entre des processus qui essaient d’accéder à une ressource
partagée ; P est exécuté à l’entrée d’une section critique, V à sa
sortie, et le résultat est que seul un processus peut s’exécuter dans
la section critique à la fois.

Cet algorithme donne le résultat voulu parce que tous les proces-
sus en concurrence exécutent les mêmes appels système et obéissent
aux mêmes conventions pour se synchroniser. Inutile de dire que
dans un système (ou prétendu tel) non préemptif qui table sur la
bonne volonté coopérative des logiciels d’application pour assurer
cette cohérence, il suffit d’un logiciel mal écrit pour provoquer des
catastrophes, et l’expérience prouve que cela se produit.

3.13 Chronologie des premiers systèmes
d’exploitation

1956 - Ainsi qu’il a été signalé au début de ce chapitre, l’ancêtre
fruste (mais déjà porteur des idées principales) des systèmes
d’explotation est GM-NAA I/O (General Motors and North
American Aviation Input/Output system), créé en 1956 par
Robert L. Patrick des laboratoire de recherche de General Mo-
tors et Owen Mock de North American Aviation pour l’IBM
704. Il s’agissait en fait d’un moniteur d’enchaînement de pro-
grammes avec des possibilités de recouvrement du temps de
calcul et du temps d’entrées-sorties.

1957 - Atlas Supervisor est créé à l’université de Manchester pour
l’ordinateur Atlas, fruit d’une collaboration entre l’université
et les industriels Ferranti et Plessey. Atlas et son système
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d’exploitation furent porteurs de nombreuses innovations :
mémoire virtuelle (1962), multi-programmation, Direct Me-
mory Access (DMA) pour les périphériques, etc. Atlas Super-
visor est peut-être le premier véritable système d’exploitation.

1960 - IBSYS pour les IBM 7090 et 7094.
1960 - MCP (Master Control Program) de la société Burroughs.

C’est le premier système écrit dans un langage de haut niveau
(un dérivé d’Algol) et également le premier système gérant des
multiprocesseurs.

1961 - CTSS (Compatible Time-Sharing System), créé au MIT
sous la direction de Fernando Corbat� pour un ordinateur
IBM 7094, modifié : taille de mémoire doublée, horloge pro-
grammable, dispositif de « trappe » (déroutement programmé
lors de l’exécution de certaines instructions). CTSS fut le pre-
mier système de temps partagé [71].

1964 - OS/360 d’IBM, premier système conçu pour toute une
gamme d’ordinateurs de puissances très différentes, est an-
noncé. Il ne sera effectivement opérationnel qu’un peu plus
tard. Plus d’un demi-siècle après sa mise en service, ce sys-
tème est toujours opérationnel sous le nom de z/OS.

1965 - Multics (Multiplexed Information and Computing Ser-
vice), successeur de CTSS, développé par la même équipe
dirigée par Fernando Corbató, écrit en langage évolué (PL/1)
comme MCP, implanté sur matériel General Electric GE-
645. À l’origine de nombreuses innovations : protection du
système par anneaux (cf. 239), mémoire segmentée, liaison
dynamique des bibliothèques de programmes, mémoire vir-
tuelle paginée, système de gestion de fichiers, etc. Multics est
l’ancêtre d’Unix.

1969 - Unix, amplement décrit et commenté dans ce livre.
Cette liste est bien sûr incomplète, il faudrait y ajouter les

systèmes de Digital Equipment (RSX/11M, VMS, etc.), de Micro-
soft (MS/DOS, Windows), de Digital Research (CP/M), d’Apple
(MacOS) et beaucoup d’autres.

Aujourd’hui ne survivent pratiquement que trois souches : z/OS
pour les mainframes IBM, Windows de Microsoft (soit dit en pas-
sant héritier adultérin de VMS de Digital Equipment, par débau-
chage de son concepteur principal David Cutler), et Unix. On no-
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tera que la famille Unix englobe Linux, macOS, iOS, Android,
FreeBSD, NetBSD, OpenBSD et quelques autres.
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4.1 Les problèmes à résoudre
La mémoire, terme d’un anthropomorphisme abusif hérité des

« cerveaux artificiels » et auquel les Anglo-Saxons ont raison de
souvent préférer storage, est un élément essentiel de l’architecture
de von Neumann. Lorsqu’un calcul est effectué par un ordinateur,
ses phases successives sont représentées par différents états de la
mémoire, ce qui est la réalisation technique du ruban de la machine
de Turing. Dès que le calcul se complique, l’organisation de la mé-
moire joue un rôle important dans l’efficacité et l’intelligibilité du
programme.

En outre, dès qu’un système d’exploitation permet la présence
simultanée en mémoire (et l’exécution « pseudo–simultanée ») de
plusieurs programmes il faut partager entre eux la mémoire dis-
ponible et veiller à éviter que l’un n’empiète sur la zone réservée
à l’autre. Les systèmes modernes permettent également d’allouer
dynamiquement des zones mémoires pour y représenter des objets
temporaires qui seront supprimés avant la fin du programme, ce qui
permettra de rendre disponible la zone mémoire correspondante.

Enfin, encore aujourd’hui la mémoire rapide est une ressource
coûteuse, aussi les ordinateurs modernes sont-ils dotés non pas
d’une mémoire homogène d’un seul tenant, mais d’une hiérarchie
de mémoires, en commençant par une toute petite mémoire très
rapide pratiquement incorporée au circuit du processeur, puis des
mémoires de plus en plus grandes et de plus en plus lentes, pour fi-
nir par un espace sur disque magnétique où sont recopiées les zones
mémoire provisoirement inutilisées. La petite mémoire très rapide
contient des données en cours de traitement, les grandes mémoire
lentes (et bon marché) contiennent des données en attente.

Toutes ces questions, regroupées sous le titre de « gestion de la
mémoire », sont l’objet des soins attentifs des architectes de pro-
cesseurs et des écrivains de systèmes d’exploitation, parce que leur
solution plus ou moins heureuse jouera un rôle primordial pour l’ef-
ficacité plus ou moins grande du couple processeur–système, et que
la conception du matériel et celle du logiciel sont ici très étroite-
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ment intriquées. Un système de mémoire raté lors de la conception
initiale d’une architecture est un des rares défauts non rattrapables.

4.2 La mémoire du programme
Nous avons dit que les états successifs de la mémoire repré-

sentent les étapes successives d’un calcul. La théorie de cette repré-
sentation, telle qu’illustrée à la grande époque des systèmes formels
par Kurt Gödel, Alan Turing et Alonzo Church, conduit à des no-
tations d’une rigueur implacable mais d’un maniement délicat, qui
réserverait la programmation des ordinateurs à une élite triée sur
le volet de la mathématique. L’histoire des langages de program-
mation est marquée par une évolution vers l’expressivité, destinée
à faciliter l’écriture comme la compréhension des programmes.

4.2.1 Les mots de mémoire
Dès von Neumann la mémoire est structurée, nous l’avons vu,

en mots qui regroupent un certain nombre de bits. Un détail à ne
pas oublier : tous les mots ont la même taille constante. Si l’on
considère chaque bit comme un chiffre binaire et un mot de taille
n comme un nombre binaire de n chiffres, nous avons l’élément de
base d’une arithmétique. L’annexe A donne quelques détails sur sa
réalisation concrète.

Nous avons vu que nous devons aussi représenter en mémoire
bien d’autres choses que des nombres. D’abord et malgré qu’en
aient les physiciens et les numériciens, toutes les données ne sont
pas des nombres, il y a aussi des chaînes de caractères, du texte,
des images et des sons représentés de façon codée. Et nous avons
vu qu’il fallait aussi stocker les instructions, qui souvent occupent
chacune un mot 1.

1 Les instructions des processeurs RISC contemporains (architectures ARM
et MIPS par exemple) sont de longueur fixe et occupent chacune un mot (de
32 ou 64 bits), ce qui simplifie la conception de beaucoup de composants du
processeur et du système. Les grands systèmes IBM (l’architecture 360 et sa
postérité) ont des instructions sur un demi-mot, un mot ou un mot et demi.
Sur le processeur Itanium (architecture IA-64) trois instructions de 41 bits
et un masque de 5 bits se partagent un double mot. Voir le chapitre 9 pour
plus de détails.
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4.2.2 Les adresses
Il faut allouer à chacun de ces objets un ou plusieurs mots de

mémoire, et ensuite pouvoir les y retrouver. Ceci suppose un sys-
tème d’identification et de repérage des mots individuels, un sys-
tème d’adresses. Beaucoup de solutions ont été essayées, mais au-
jourd’hui tous les concepteurs se sont ralliés à la plus simple : les
mots de la mémoire centrale sont numérotés du premier au der-
nier et chaque mot est identifié par son numéro d’ordre qui est son
adresse. Enfin, à un facteur près : pour des raisons de commodité
l’unité adressable de mémoire est le plus souvent aujourd’hui un oc-
tet de 8 bits, le mot comportera quatre ou huit octets et les adresses
de mots seront des multiples de 4 ou de 8.

Ceci semble anodin et simple, et il s’agit pourtant d’un choix
technique absolument crucial. L’adresse est un numéro, donc un
nombre, un nombre binaire, on l’aura deviné. Les adresses, nous
l’avons vu en 2.4.1, sont manipulées par les instructions, c’est-à-
dire qu’elles doivent tenir dans les registres 2. La taille d’un registre
en bits est la borne supérieure du nombre de chiffres binaires d’une
adresse. Si le registre a n bits, la plus grande adresse vaudra 2n−1,
et donc aucun ordinateur conforme à cette architecture ne pourra
avoir une capacité mémoire supérieure à 2n octets. Cette valeur de
n intervient partout dans l’architecture et dans les programmes, si
on l’a prévue trop petite au départ c’est irréparable.

L’architecture 360 conçue au début des années 1960 comportait
des mots, et donc des registres, de 32 bits, ce qui permettait une
taille mémoire maximum de 232 octets, un peu plus de 4 milliards. À
l’époque cette valeur semblait énorme, et les ingénieurs limitèrent la
taille des adresses à 24 bits donnant accès à une mémoire de 16 mil-
lions d’octets. En effet chaque bit d’adresse supplémentaire coûte
très cher : les adresses sont transmises entre le processeur, la mé-
moire et les périphériques par des bus spéciaux (les bus d’adresse)
qui comportent un fil par bit. La largeur du bus d’adresse pèse lourd
dans le budget du processeur en termes de surface, de consomma-
tion électrique, de complexité des dispositifs, sans parler de la taille
accrue des circuits logiques de toutes les instructions qui doivent
manipuler des adresses.

2 Notre programme d’exemple avait un jeu d’instructions autorisant la pré-
sence d’adresses directement dans les instructions, ce qui n’est plus le cas
des architectures récentes, où les adresses sont manipulées dans les registres.
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Les concepteurs du matériel mirent en garde les concepteurs de
logiciels : interdiction d’utiliser les huit bits vides qui restaient dans
les mots de mémoire ou les registres qui contenaient des adresses,
ils seraient précieux pour une extension ultérieure de l’architec-
ture ! Mais à une époque où chaque bit de mémoire était utilisé
avec parcimonie et à bon escient c’était un supplice de Tantale.
Lorsqu’à la fin des années 1970 la limite de 16 millions d’octets
se révéla une contrainte insupportable, les systèmes d’exploitation
développés par IBM soi-même pour l’architecture 360 utilisaient
régulièrement les huit bits de poids fort des mots d’adresse pour
toutes sortes d’usages, et la conversion à l’architecture XA (pour
Extended addressing, passage aux adresses sur 32 bits) imposa un
remaniement complet de milliers de modules de logiciel, au prix
d’années de travail et de millions de dollars 3. Cette imprévoyance
eut de fait des conséquences bien plus lourdes même si bien moins
médiatiques que le soi-disant « bug de l’an 2000 ».

4.2.3 Noms et variables
L’adresse, que nous venons de décrire, a deux fonctions bien

différentes : elle repère la position physique d’un emplacement en
mémoire, et elle permet à un programme en langage machine (ou en
assembleur) d’en désigner le contenu. Dans ce dernier rôle l’adresse
exerce la fonction de nom : un élément de langage (un lexème) qui
désigne est un nom.

En langage machine ou assembleur les noms sont des adresses,
mais dans des langages de plus haut niveau les noms sont des
lexèmes plus abstraits, en fait plus similaires à ce que nous ap-
pelons nom dans la grammaire des langages humains. De tels noms
seront généralement appelés des identifiants. Mais pour être exécuté
le programme en langage de haut niveau sera traduit en langage as-
sembleur, puis en langage machine, et ses noms (ses identifiants) se
résoudront en adresses qui permettront d’accéder physiquement à
la donnée.

3 En réalité XA était un adressage sur 31 bits ; pour éviter les conflits trop
graves avec les anciens programmes, on conserve les adresses traditionnelles
sur 24 bits et on dégage 231 octets adressables nouveaux en utilisant des
adresses « négatives » (voir l’annexe A pour la représentation des nombres
binaires négatifs, qui explique cet artifice). Le passage aux adresses sur 64
bits aura demandé des méthodes plus radicales...
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En langage machine ou assembleur même, la donnée traitée
n’est pas toujours désignée directement par une adresse simple.
Un mot peut contenir l’adresse d’un autre mot qui, lui, contient
l’adresse de la donnée, c’est l’adressage indirect. Il peut aussi être
commode de traiter de façon itérative une série de mots adjacents
comme un tableau : un registre R1 contiendra l’adresse du premier
mot, et un registre R2 contiendra le rang du mot courant dans
la série, éventuellement multipliée par la taille du mot en octets :
ainsi l’adresse réelle du mot à traiter sera R1 + R2. R1 sera ap-
pelé registre de base et R2 registre index du tableau. L’art de la
programmation en assembleur consiste à utiliser judicieusement les
possibilités d’adressage indirect et indexé.

Dans un langage évolué, en général, on a envie de conserver des
résultats intermédiaires, ou des valeurs significatives d’un calcul
ou d’un traitement de quelque sorte. Ces valeurs, de quelque type
(nombre, texte, image), occupent un ou plusieurs mots qui consti-
tuent un objet élémentaire. Bref, on souhaite pouvoir retrouver, à
la demande, la valeur d’un objet du langage. La solution retenue
consiste souvent à associer à la valeur un nom (un identifiant) de
telle sorte que l’évocation ultérieure de ce nom procure un accès à
la valeur. L’identifiant sera le nom de l’objet.

L’objet le plus habituel des langages de programmation évolués
est la variable. La variable, nous l’avons vu à la section 2.8, est un
objet doté des propriétés suivantes (que nous enrichissons ici) :

1. posséder un nom ;
2. posséder une valeur ;
3. le langage permet, par le nom, de connaître la valeur de la

variable ;
4. une variable a une durée de vie (une persistance), qui est sou-

vent égale à la durée pendant laquelle le programme s’exé-
cute, mais qui peut être plus courte (variable locale à un
sous-programme) et que l’on peut souhaiter plus longue (les
moyens de satisfaire ce souhait feront l’objet du chapitre sui-
vant) ;

5. une variable a une visibilité, qui peut s’étendre à l’ensemble
du programme, mais qui peut être limitée par exemple à un
sous-programme ;

6. il est possible par le langage de modifier la valeur de la va-
riable. L’opération de modification de la valeur d’une variable
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s’appelle l’affectation (notons que certains langages de haut
niveau tels que ML et Haskell n’autorisent pas cette opération
d’affectation).

Ne perdons pas de vue qu’en dernier recours ce que nous ap-
pelons valeur sera une configuration de bits contenue dans un ou
plusieurs mots de mémoire. La valeur a donc une existence phy-
sique, elle est un élément de l’état de la mémoire.

Le nom sera en dernière analyse traduit en une adresse, l’adresse
du premier mot de la région de mémoire où est stockée la valeur.
Le nom n’est qu’un objet du langage, un objet symbolique destiné
à disparaître au cours du processus de traduction de langage évolué
en langage machine. Nous avons ainsi une chaîne de noms, depuis
l’identifiant du langage évolué jusqu’à l’adresse mémoire physique
en passant par d’éventuelles adresses indirectes (des noms de noms)
ou indexées, qui tous mènent à la même donnée. Cette chaîne par-
court en fait les différents niveaux d’abstraction qui mènent de la
description formelle d’un traitement par le texte d’un programme
jusqu’à son exécution par un ordinateur matériel.

Revenons un instant sur l’affectation, qui est la propriété nu-
méro 6 de ce que nous avons appelé variable. Si nous en étions res-
tés aux trois propriétés précédentes, ce que nous appelons variable
serait grosso modo la même chose que ce que les mathématiciens ap-
pellent variable. Mais l’affectation opère une rupture radicale entre
vision mathématique et vision informatique du calcul, elle y intro-
duit un aspect dynamique, actif et concret qui est étranger aux
mathématiciens.

Or cette rupture, si elle est radicale, n’est susceptible ni de
suture ni de réduction. L’affectation est vraiment au cœur de la
problématique informatique, c’est elle qui permet de modéliser un
calcul par des états de mémoire successifs, bref c’est elle qui permet
de réaliser des machines de Turing.

4.2.4 Protection de la mémoire
Dès que les systèmes se compliquèrent, et surtout dès qu’il y eut

plusieurs programmes en mémoire, des accidents arrivèrent. Si l’on
a en mémoire le petit programme en langage machine de la section
2.4.1, il est clair qu’une erreur de programmation très banale peut
envoyer une donnée à une mauvaise adresse, et écraser une donnée
ou une instruction qui ne devrait pas l’être, ce qui perturbera radi-
calement les traitements ultérieurs. Si encore le programme erroné
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détruit ses propres données ou son propre texte, l’auteur n’a qu’à
s’en prendre à lui-même, mais s’il s’agit de celui d’un collègue in-
nocent c’est trop injuste. Et si ce sont les données ou le texte du
système, alors la catastrophe est générale.

Les premiers systèmes de multiprogrammation abordaient ce
problème par le côté du matériel. L’architecture 360 découpe (elle
existe encore...) la mémoire en groupes de 2 048 octets qui consti-
tuent l’unité non partageable (le quantum) d’allocation à un pro-
cessus donné. Chacun de ces groupes possède une clé physique
de quatre chiffres binaires pouvant donc prendre 16 valeurs. Par
ailleurs le PSW comporte un champ de quatre bits qui contient la
clé attribuée à son démarrage au processus courant. Lors de tout
accès mémoire, le processeur vérifie que la clé de la zone concernée
est bien égale à la clé du processus courant, sinon le processeur
provoque une erreur fatale et le processus concerné est interrompu.
Bien sûr le système d’exploitation qui s’exécute en mode privilégié
bénéficie d’une clé particulière, la clé zéro, qui lui donne accès à
toute la mémoire.

Ce système est un peu rudimentaire : il n’autorise que quinze
processus concomitants et le système. Le développement des sys-
tèmes à mémoire virtuelle permettra des dispositifs bien plus raffi-
nés.

4.3 Partage de mémoire en multiprogramma-
tion

Les sections 3.2 et 3.8 ont décrit les principes de la multipro-
grammation et ses conséquences dans le domaine de la mémoire ;
il faut maintenant préciser comment se fait l’attribution de la mé-
moire à chacun des programmes concomitants pseudo-simultanés.

4.3.1 Exemple : l’OS/360
Les premiers systèmes d’exploitation destinés à l’architecture

IBM 360, au milieu des années 1960, procédaient de façon statique :
une zone fixe en mémoire était attribuée à chaque programme à son
démarrage et il la gardait jusqu’à la fin de son exécution. Il existait
deux variantes :

— Avec l’OS/MFT (Multiprogramming with a fixed number of
tasks), la mémoire était découpée en partitions fixes au dé-
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marrage du système. Il appartenait à l’administrateur du
système de fixer judicieusement le nombre de partitions et
la taille de chacune d’entre elles. Les travaux étaient répartis
en classes (en fait des files d’attente) et chaque classe était
éligible pour une ou plusieurs partitions, principalement en
fonction de la taille mémoire nécessaire à l’exécution des
travaux de la classe. On pouvait ainsi prévoir plusieurs pe-
tites partitions pour petits travaux et une grande partition
pour les gros. Le modèle de file d’attente pour l’exécution
des travaux est laissé en exercice au lecteur.
L’inconvénient de ce système est facile à imaginer : les parti-
tions sont des lits de Procuste. Leur taille est toujours plus
ou moins arbitraire et tous les programmes ne peuvent pas
s’y adapter exactement. De surcroît les files d’attente de cer-
taines classes peuvent être vides alors que d’autres peuvent
être embouteillées. Tout ceci entraîne un risque de mauvaise
utilisation de la mémoire.

— La version plus perfectionnée, OS/MVT (Multiprogramming
with a variable number of tasks), abolit le découpage rigide
de la mémoire. Chaque programme annonce la taille de la
région de mémoire nécessaire à son exécution et dès qu’elle
est disponible elle lui est attribuée, toujours une fois pour
toutes et jusqu’à la fin de son exécution. Détail important :
la région de mémoire ainsi allouée est contiguë.
OS/MVT est beaucoup plus complexe mais beaucoup plus
satisfaisant qu’OS/MFT. Néanmoins on voit bien que ce
n’est pas vraiment satisfaisant : les programmes ont des
tailles et des durées d’exécution arbitraires. Lorsqu’un pro-
gramme se termine il libère une région de mémoire qui laisse
un trou à une adresse arbitraire au milieu de la mémoire.
Rien n’assure que parmi les programmes en file d’attente il
y en aura un qui logera dans ce trou. Il peut ainsi se créer un
effet « fromage de gruyère », où plusieurs trous de mémoire
atteignent taille cumulée suffisante pour les travaux en at-
tente, mais comme chacun est trop petit, la file d’attente est
bloquée.
Ce défaut de la gestion de mémoire de l’OS/360 sera cor-
rigé par l’introduction de la mémoire virtuelle que nous étu-
dierons à la section suivante, mais auparavant il nous faut
compléter ce qui vient d’être dit en expliquant la translation
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des programmes, sans quoi nous ne pourrions avoir plusieurs
programmes en mémoire simultanément.

4.3.2 Translation des programmes
Oui il s’agit bien de translation, puisqu’aujourd’hui il faut pré-

ciser en employant ce mot que l’on n’est pas en train de faire une
erreur de traduction (justement) de l’anglais translation qui signi-
fie traduction en français 4. Nous avons donc parlé plus haut de la
traduction des programmes, ici c’est de leur translation qu’il s’agit.

Le lecteur vigilant, à la lecture des alinéas précédents, aura dû
se demander comment il est possible de charger des programmes en
mémoire à des adresses somme toute imprévisibles sans en pertur-
ber la fonctionnement ? Lors de nos essais en langage machine nos
programmes comportaient des adresses qui désignaient sans ambi-
guïté un mot de mémoire bien déterminé où devait se trouver une
instruction ou une donnée indispensable au bon déroulement des
opérations. Locus regit actum...

Si maintenant on nous dit que le programme va être chargé à une
adresse qui ne sera plus l’adresse 0, mais une position quelconque
et imprévue en plein milieu de la mémoire, tout le texte va être
décalé, et chaque objet désigné par le programme aura une adresse
qui ne sera plus l’adresse absolue à partir de 0 que nous avions
écrite, mais cette adresse additionnée de l’adresse de chargement
du programme. Comment est-ce possible ? Nous avons déjà abordé
cette question à la section 2.6, nous allons y revenir ici.

Lorsqu’on programme en assembleur, on écrit rarement des
adresses absolues. Les assembleurs allègent la tâche du program-
meur en lui permettant de désigner la position d’un octet dans le
texte du programme par un nom symbolique, que l’assembleur se
chargera de traduire en adresse. Nous avons vu un exemple d’usage

4 Je voudrais en profiter pour réhabiliter aussi consistant, qui n’est pas la
traduction française de consistent, laquelle est « cohérent ». L’inconvénient
de ces confusions est la perte de signifiés. La consistance et la translation
sont des concepts intéressants et utiles, menacés de disparition par extinc-
tion (usurpation ?) de leurs signifiants. Si aujourd’hui dans un milieu ma-
thématique vous vous risquez à ne pas employer consistant où il faudrait
cohérent, au mieux vous ne vous ferez pas comprendre, et vous serez soup-
çonné de ne pas être un habitué des conférences anglo-saxonnes. J’ai dressé
un répertoire (incomplet) de ces faux-amis ici : https://laurentbloch.net/
MySpip3/Faux-amis-Deceptive-Cognates

https://laurentbloch.net/MySpip3/Faux-amis-Deceptive-Cognates
https://laurentbloch.net/MySpip3/Faux-amis-Deceptive-Cognates
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de nom symbolique dans le programme assembleur de la section
2.6, avec le traitement de l’étiquette FIN, qui désignait l’instruction
située à l’adresse absolue 5. Un tel symbole peut de la même façon
désigner le premier octet d’une zone de mémoire qui contient une
donnée.

Nous voulons maintenant que ce symbole ne désigne plus
l’adresse absolue 5, mais une adresse relative par rapport au dé-
but du programme, lequel ne serait plus nécessairement à l’adresse
0. Pour ce faire, notre assembleur devra opérer une traduction un
peu plus complexe ; chaque symbole sera traduit en adresse selon le
schéma suivant : l’adresse sera exprimée comme la somme de deux
termes :

— un déplacement par rapport au début du programme, égal
à l’adresse que nous avions écrite de façon absolue ;

— une valeur dite de base, qui correspondra à l’adresse de char-
gement du programme, et sera contenue dans un registre, dit
registre de base.

Pendant l’assemblage proprement dit, le registre de base recevra
la valeur 0. Au moment de l’exécution, il recevra l’adresse du point
de chargement du programme en mémoire, et ainsi nos adresses
exprimées sous la forme base + déplacement seront juste. Le mé-
canisme qui place dans le registre de base l’adresse de début du
programme varie selon les systèmes, il est parfois à la charge du
système d’exploitation, d’autres réalisations laissent cette action
à la charge du programmeur qui dispose d’instructions capables
de l’effectuer (c’est le cas de l’OS/360). Enfin, n’oublions pas que
lorsque que nous disons programmeur il faut la plupart du temps
entendre compilateur, parce que c’est lui qui va traduire en assem-
bleur les programmes écrits en langage évolué par des humains qui
n’auront pas eu à se soucier de ces contingences techniques pourtant
passionnantes.

Ce perfectionnement de l’assembleur n’est pas très spectacu-
laire, mais sans lui la multiprogrammation serait plus complexe
à réaliser. Les programmes assemblés selon ce principe avec des
adresses sous forme de base + déplacement sont appelés des pro-
grammes translatables. La translation des programmes est parfois
aussi nommée réimplantation . Nous retrouverons un autre usage
de cette propriété lorsque nous parlerons de l’édition de liens, qui
permet de réunir plusieurs modules de programmes compilés indé-
pendamment (c’est-à-dire éventuellement écrits dans des langages
différents) pour constituer un seul programme.
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4.4 Mémoire virtuelle
4.4.1 Insuffisance de la mémoire statique

Nous avons vu ci-dessus que l’allocation à un programme de
la zone mémoire dont il avait besoin, de façon fixe une fois pour
toutes au début de son exécution, avait un inconvénient qui était
la fragmentation de la mémoire au fur et à mesure du lancement à
des instants aléatoires de programmes de tailles hétérogènes. Ainsi
peut être libre une zone de mémoire de taille suffisante pour lancer
un programme sans que le lancement soit possible, parce que cette
zone libre est constituée de fragments disjoints.

Certains systèmes des années 1960 (Univac, Control Data) pal-
liaient cette inefficacité en réorganisant périodiquement la mémoire
pour « tasser » les zones utilisées les unes contre les autres. Mais
une solution bien plus radicale allait advenir : la mémoire virtuelle.
La voici.

4.4.2 Organisation générale
L’organisation de mémoire virtuelle que nous allons décrire est

inspirée de celle des systèmes IBM 370 et suivants, mais les autres
réalisations sont assez comparables. Il y a eu des organisations dif-
férentes, mais celle-ci, qui est la plus simple, s’est aussi révélée la
plus efficace, ce qui a assuré son succès général.

Il existe dans cette organisation trois états de la mémoire : vir-
tuelle, réelle, auxiliaire. La mémoire virtuelle est celle que les pro-
grammes utilisent, mais elle n’existe pas vraiment. Un emplacement
de la mémoire virtuelle peut avoir ou ne pas avoir de contenu ; s’il
n’a pas de contenu il est simplement virtuel et le restera jusqu’à ce
que le programme décide d’y placer un contenu ; s’il a un contenu
il faut bien que celui-ci existe quelque part, et ce quelque part sera
soit la mémoire réelle, soit une zone tampon sur disque appelée
mémoire auxiliaire.

La mémoire virtuelle répond à deux préoccupations. La pre-
mière vise à éviter le gaspillage de fragments de mémoire en per-
mettant à la mémoire linéaire vue par le programme d’être physi-
quement constituée de fragments disjoints, ce qui supprime l’incon-
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vénient de la fragmentation de la mémoire, au prix d’un mécanisme
que nous allons étudier pour rétablir la fiction de la linéarité 5.

Localité des traitements

La seconde préoccupation répond à un phénomène appelé loca-
lité des traitements. Si nous observons, cycle par cycle, le déroule-
ment d’un programme dont la taille mémoire est par exemple de
un million d’octets, nous constaterons que pendant une tranche de
temps donnée, brève par rapport au temps d’exécution total, il ne
fait référence qu’à un petit nombre d’adresses proches les unes des
autres. Ceci veut dire qu’à chaque instant le programme a besoin
de beaucoup moins de mémoire qu’il ne lui en faut au total, et que
le contenu de la mémoire inutile à un instant donné pourrait être
stocké provisoirement dans un endroit moins coûteux, par exemple
sur disque.

Lorsque le système d’exploitation lance l’exécution d’un pro-
gramme, il lui alloue un espace de mémoire virtuelle. Comme cette
mémoire est virtuelle, donc gratuite ou presque, l’espace alloué est
aussi vaste que l’on veut, dans les limites de l’adressage possible
avec la taille de mot disponible.

Cet espace de mémoire virtuelle est découpé en pages de taille
fixe (souvent 212 = 4 096 octets, pour fixer les idées) et décrit par
une table des pages. En fait, pour éviter d’avoir une seule grande
table incommode à manipuler on aura généralement une table à plu-
sieurs niveaux, avec une table de segments au niveau le plus élevé,
un segment comprenant par exemple 32 pages et chaque segment
ayant une petite table de pages, mais l’idée est la même.

Les emplacements en mémoire virtuelle sont désignés par des
adresses virtuelles, qui ressemblent comme des sœurs aux adresses
réelles que nous avons vues jusqu’alors. Les adresses multiples de
4 096 (selon notre exemple) sont des frontières de pages, et les mul-
tiples de 32 ∗ 4 096 = 131 072 des frontières de segments, mais cela
ne change pas grand-chose. La table des pages aura une entrée par
page, indexée par l’adresse virtuelle de la page, qui sera le numéro

5 Malgré les avantages qu’elle apporte, la mémoire virtuelle n’a pas eu que des
aficionados. Seymour Cray, qui fut le concepteur des ordinateurs les plus
puissants du XXe siècle, de 1957 à 1972 pour Control Data Corporation ,
puis jusqu’à sa mort en 1996 pour Cray Research, a dit : « La mémoire, c’est
comme le sexe : c’est meilleur quand c’est réel. »
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d’ordre de l’octet frontière de page dans l’espace virtuel, soit un
multiple de 4 096, c’est-à-dire un nombre binaire se terminant par
douze 0.

4.4.3 Pagination
Que dit la table des pages ? D’abord, pour chaque page virtuelle

elle indique où elle se trouve réellement. Selon les trois états de
mémoire évoqués ci-dessus, il y a trois situations possibles pour
une page virtuelle :

1. elle peut avoir une incarnation en mémoire réelle, physique,
et la table indique alors l’adresse réelle de cette incarnation ;
la zone de mémoire réelle qui accueille une page de mémoire
virtuelle est appelée cadre de page (page frame) ;

2. si elle correspond à une adresse qui n’a encore jamais été
invoquée par le programme, elle reste purement virtuelle et
elle n’existe physiquement nulle part, son existence est limitée
à une entrée vierge dans la table des pages ;

3. si cette page a été utilisée à un moment donné mais que l’exé-
cution du programme ne nécessitait pas son usage à cet ins-
tant et qu’il n’y avait pas assez de place en mémoire centrale,
elle peut avoir été placée sur disque dans ce que l’on appel-
lera mémoire auxiliaire de pages, et la table indiquera son
emplacement dans cette mémoire auxiliaire.

MMU (Memory Management Unit)

Comment fonctionne la mémoire virtuelle ? Les programmes ne
connaissent que la mémoire virtuelle, et des adresses virtuelles.
Chaque fois qu’une instruction fait référence à une donnée, cette
référence est une adresse virtuelle. Il faut donc traduire à la volée
l’adresse virtuelle en adresse réelle : l’obtention d’une vitesse rai-
sonnable impose un circuit logique particulier à cet effet, appelé
DAT (Dynamic Address Translation). Avec les autres fonctions de
gestion de la mémoire virtuelle que nous allons décrire il constitue
la MMU (Memory Management Unit).

Le DAT fonctionne de la façon suivante, illustrée par la figure
4.1 p. 96. L’adresse (24 bits dans notre exemple) est découpée en
trois parties : les 12 derniers bits (si nous poursuivons notre exemple
avec des pages de taille 212), dits bits de poids faible, sont considé-
rés comme une adresse relative par rapport à la frontière de page
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précédente, soit un déplacement dans la page. Les 5 bits de poids
le plus fort sont un numéro de segment, index dans la table de seg-
ments du processus, qui permet de trouver la table des pages du
segment. Les 7 bits de poids intermédiaire sont un numéro de page,
index dans la table des pages qui permet de trouver la page concer-
née. La partition des 12 bits de poids fort en numéro de segment et
numéro de page n’est qu’un artifice pour hiérarchiser la table des
pages, ils peuvent être considérés globalement comme le numéro de
page.

1

4

dans la table des pages externes
correspondant
Le système va chercher l’élément

2

5

3
Cet élément
situe la page
dans la mémoire
auxiliaire de
pages

Le système rouve un
cadre de page libre
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4
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1
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Emplacement du cadre

courant
Table des segments du processus

Figure 4.1 – Pagination : cas où la page demandée n’est plus en mémoire réelle
(exemple de l’OS/370)

Le DAT consulte la table des pages pour y chercher l’entrée
correspondant au numéro de page virtuelle voulu. Selon les trois
cas énumérés ci-dessus trois situations peuvent se présenter :

— Dans le cas 1 de la liste ci-dessus la page existe et possède
une incarnation en mémoire réelle. Le circuit de traduction
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d’adresse trouve dans la table des pages l’adresse du cadre
de page qui contient la page virtuelle. Cette adresse est addi-
tionnée au déplacement dans la page, ce qui donne l’adresse
réelle à laquelle le programme doit accéder.

— Voyons ensuite le cas 2 : l’adresse évoquée par le programme
n’a encore fait l’objet d’aucune référence, non plus qu’aucune
adresse de la même page. Cette situation peut se produire
au lancement d’un programme, ou après l’allocation d’une
zone de mémoire dynamique vierge, par exemple. Il va falloir
obtenir du système une page réelle « neuve » et placer son
adresse dans la table des pages, ainsi nous serons ramenés
au problème précédent, après la consommation d’un nombre
non négligeable de cycles de processeur. La MMU génère une
exception dite de défaut de page (la section 3.12.2 donne la
définition des exceptions), et le gestionnaire de défaut de
page va être chargé d’obtenir une page réelle neuve.
Comment obtient-on une page réelle neuve ? Le système gère
une table des cadres de pages en mémoire réelle, cette table
garde pour chaque cadre de page un certain nombre d’in-
formations, et notamment s’il est libre. Deux cas peuvent se
présenter :
a. Si le parcours de la table des cadres de pages révèle un

cadre libre il est alloué à la page vierge, son adresse est
placée dans la table des pages et le programme peut pour-
suivre son exécution.

b. S’il n’y a aucun cadre de page libre, il faut en libé-
rer un. En première approximation nous dirons que le
système d’exploitation procède ainsi (nous verrons plus
tard quelques raffinements techniques qui améliorent les
performances sans bouleverser le schéma de principe) :
chaque entrée dans la table des cadres de pages com-
porte une estampille qui indique la date du dernier accès
d’un programme à une adresse comprise dans la page qui
réside dans ce cadre. L’estampille de plus faible valeur
désigne le cadre de la page la moins récemment utilisée.
Cette page est donc candidate à l’éviction : son contenu
est recopié en mémoire auxiliaire de pages, son cadre li-
béré et alloué à notre page vierge. La table des pages est
mise à jour et le programme continue comme dans le cas
précédent.
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Cet algorithme qui consiste à évincer la page la moins
récemment utilisée est appelé LRU (Least recently used)
et nous le retrouverons pour d’autres usages.

— Voyons enfin le cas 3 : la page a été utilisée, elle a un contenu,
mais elle ne réside plus en mémoire réelle, elle a été déplacée
sur disque en mémoire auxiliaire de page. Cette condition
déclenche comme la précédente une exception de défaut de
page et le transfert du contrôle au gestionnaire de défaut
de page. Il faut pour pouvoir utiliser la page la ramener en
mémoire réelle, et pour cela il faut qu’un cadre de page soit
libre, ou en libérer un : ceci est fait selon le même mécanisme
qu’à l’alinéa ci-dessus. Une fois le cadre de page obtenu, le
contenu de la page virtuelle qui était en mémoire auxiliaire
est recopié dans ce cadre, la table des pages est mise à jour
et l’exécution du programme peut continuer. C’est le méca-
nisme illustré par la figure 4.1.

Une vision de la pagination

La technique de pagination a suscité une floraison de méta-
phores explicatives, qui aident à comprendre la question. Celle que
je cite ici m’a été fournie par mon collègue Henri Leridon :

« Finalement, tout ça me semble relever du problème du garçon
de plage sur la Côte d’Azur au mois d’août. Je m’explique. Le
plagiste doit gérer – au mieux – un espace limité, avec des clients
qui vont et viennent en exprimant des besoins (de surface au sol :
on les laisse se débrouiller dans l’eau) variés. On peut compliquer
un peu en supposant que les premiers arrivés d’une même famille
ne savent pas à l’avance combien ils seront au total, ni à quelle
heure arrivera le reste de la famille, mais qu’ils voudront être tous
ensemble. On pourrait aussi admettre qu’il y a deux plagistes, situés
chacun à une extrémité de la plage et gérant plus ou moins le même
espace. Et pourquoi ne pas admettre que les clients seraient en droit
de changer de place (pour se rapprocher du bar, par exemple), les
plagistes devant alors s’évertuer à conserver leur adresse ? »

4.4.4 Espaces adresse
Les premiers systèmes à mémoire virtuelle (chez IBM par

exemple OS/VS1 et VS2 en 1972) allouaient pour l’ensemble du
système un espace unique de mémoire virtuelle dont la taille était
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fixée par la valeur maximum d’une adresse. Cet espace virtuel était
partagé entre les programmes selon les mêmes principes que dans
les anciens systèmes sans mémoire virtuelle, tels que nous les avons
exposés au début de ce chapitre. Ceci présentait l’avantage que
l’adjonction de la mémoire virtuelle modifiait assez peu le système
d’exploitation.

Cependant le caractère virtuel de la mémoire allouée permet
d’imaginer d’autres solutions, notamment allouer à chaque pro-
gramme un espace de mémoire virtuelle entier. Pour réaliser un
tel système il faut donner à chaque programme une table des pages
particulière, qui décrit tout l’espace adressable. Quand le système
d’exploitation donnera la main à un autre programme il changera
également de table des pages. Ce sera chez IBM le système MVS
(Multiple Virtual Storage) en 1974, chez Digital Equipment VMS
en 1977, chez Data General AOS/VS... Une mémoire virtuelle à
espaces adresse multiples est illustrée par la figure 4.2.

Il ne devrait pas échapper au lecteur attentif une conséquence
importante de cette multiplication des espaces de mémoire virtuelle
(ou espaces adresse) : une adresse virtuelle donnée est désormais
traduite dans le contexte d’exécution d’un programme donné, la
même adresse dans le contexte d’un autre programme est traduite
à partir d’une autre table des pages, et correspond donc à une
autre adresse réelle. Il est de ce fait impossible à un programme de
faire référence à une adresse qui appartient à une page de mémoire
virtuelle d’un autre programme. La mémoire virtuelle à espaces
adresse multiples améliore la sécurité des données.

Autre conséquence : dans les systèmes à espace adresse unique
(virtuel ou non) l’adresse de chargement d’un programme dépend
de l’emplacement de la zone de mémoire libre que le système a pu
lui allouer, elle est donc variable, d’où les techniques de translation
exposées à la section 4.3.2. Maintenant que chaque programme a
son espace privé, rien n’interdit de le charger toujours à la même
adresse, et d’avoir une carte de la mémoire identique d’une exécu-
tion à l’autre.

Cela dit, l’usage de cette facilité s’est rapidement heurtée à un
inconvénient majeur : si on peut toujours retrouver les mêmes struc-
tures de données aux mêmes adresses dans la mémoire, cela facilite
grandement le travail de ceux qui doivent mettre au point et débo-
guer le système, mais aussi celui des attaquants et autres pirates !
Après quelques événements dommageables, les architectes de sys-
tème se résolurent à « placer de façon aléatoire les zones de don-
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nées dans la mémoire virtuelle. Il s’agit en général de la position
du tas, de la pile et des bibliothèques. Ce procédé permet de li-
miter les effets des attaques de type dépassement de tampon par
exemple 6. » Cette technique se nomme « distribution aléatoire de
l’espace d’adressage » (address space layout randomization, ASLR).

D’autre part, les techniques de translation conservent leur uti-
lité pour pouvoir lier ensemble des programmes écrits séparément,
elles ont même trouvé un surcroît d’utilité avec les techniques de
processus légers connus sous le nom d’activités (threads) : la multi-
activité (multithreading) consiste à faire exécuter plusieurs par-
ties de programmes en pseudo–simultanéité dans le même espace
adresse (voir section 10.6). L’instabilité notoire de certains pro-
grammes qui reposent sur cette technique, au premier rang des-
quels les navigateurs du Web, découle peut-être de cette promis-
cuité en mémoire, qui a par ailleurs des avantages : il est commode
de pouvoir afficher plusieurs fenêtres du navigateur à l’écran, et
de consulter une page dans une fenêtre cependant qu’une autre se
charge dans une fenêtre différente et qu’un transfert de fichier a
lieu dans une troisième. Vous ne le saviez peut-être pas mais c’est
de la multi-activité.

Que chaque programme s’exécute dans son espace privé inac-
cessible aux autres parce que tout simplement aucun nom n’est
disponible pour en désigner les emplacements, très bien, mais il y
a quand même des choses à partager. Notamment le système d’ex-
ploitation, qui après tout est lui aussi un programme, avec des sous-
programmes qui doivent pouvoir être appelés par les programmes
ordinaires. Le système d’exploitation comporte aussi de nombreuses
tables qui contiennent des informations relatives à l’état de l’ordi-
nateur et du système, comme par exemple le fuseau horaire de
référence, des moyens d’accès aux données sur disque ou au réseau,
etc. Comment y accéder ?

La solution imaginée par les auteurs de VMS est la suivante :
les adresses sont sur 32 bits, ce qui autorise des espaces adresse
de 232 octets, soit plus de quatre milliards (4 294 967 296). Les 231
octets qui constituent la première moitié de cet espace (avec des
adresses dont le bit de poids le plus fort est 0) sont dévolus au pro-
gramme et à ses données. Les 231 octets suivants (avec des adresses

6 Cf. Wikipédia, https://fr.wikipedia.org/wiki/Address_space_layout_
randomization

https://fr.wikipedia.org/wiki/Address_space_layout_randomization
https://fr.wikipedia.org/wiki/Address_space_layout_randomization
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Figure 4.2 – Mémoire virtuelle à espaces adresse multiples

dont le bit de poids le plus fort est 1) sont dévolus au système
d’exploitation, c’est-à-dire que ces pages sont décrites par la table
des pages du système. Naturellement pour tous les programmes la
table des pages du système est la même, c’est-à-dire que tous les
programmes voient le même système d’exploitation avec les mêmes
adresses virtuelles, et n’y ont bien sûr droit qu’à un accès en lecture
mais pas en modification. On dit que le système d’exploitation est
mappé (de l’anglais mapped) dans l’espace adresse du programme,
les adresses virtuelles des pages du système sont superposées à des
adresses virtuelles de l’espace de chaque programme.

Les auteurs de Unix 4.4 BSD ont eu recours à un découpage
analogue, mais ils ont été moins généreux pour le système d’ex-
ploitation (le noyau) et le programme reçoit la plus grande part de
l’espace adresse. Il est vrai que 4.4 BSD était moins volumineux
que VMS.

Après cet éloge des systèmes à espaces adresse multiples, il
convient de signaler que les processeurs 64 bits semblent remettre à
la mode l’espace adresse unique. En effet l’espace offert par une telle
taille d’adresse est suffisant pour les usages actuels, et la concep-
tion du système s’en trouverait simplifiée. L’architecture IA-64 (Ita-
nium) prévoit le support des deux types de gestion de mémoire
virtuelle, et les manuels Intel présentent l’espace adresse unique
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comme la voie de l’avenir... mais en 2018 l’Itanium fait figure d’es-
pèce en voie d’extinction.

4.4.5 Registres associatifs (Translation Lookaside Buffer,
TLB)

Tout ceci fonctionne, mais il est difficile de ne pas se poser
la question suivante : si chaque accès à la mémoire entraîne une
traduction d’adresse, et que celle-ci entraîne la consultation d’une
table des pages, cela risque de consommer un temps considérable,
même avec une table hiérarchisée et un circuit spécial. Un espace
adresse de 232 octets (adresses sur 32 bits) découpé en pages de
4 096 octets aura une table des pages avec un million d’entrées,
alors ne parlons pas d’adresses sur 64 bits qui nous entraîneraient
vers une table à 252 entrées...

En fait, un système de mémoire tel que celui décrit jusqu’ici se-
rait d’une lenteur exécrable. Pour en accroître la vitesse les MMU
réelles ont recours à un dispositif qui ne change rien aux grands
principes de fonctionnement mais qui procure une accélération spec-
taculaire : le tampon de traduction anticipée (Translation Lookaside
Buffer, TLB).

L’idée est de tirer parti une seconde fois de la localité des traite-
ments (cf. section 4.4.2). Puisqu’un programme à un moment donné
ne fait référence qu’à un petit nombre d’adresses proches les unes
des autres (c’est un fait d’observation générale), c’est qu’il utilise
(pendant ce laps de temps) toujours les mêmes pages. Il serait donc
judicieux de garder sous la main, c’est-à-dire dans quelques registres
implantés sur le circuit du processeur, et de ce fait d’un accès beau-
coup plus rapide que la mémoire, le résultat des traductions les plus
récentes, soit une table de correspondance numéro de page virtuelle
– numéro de cadre de page pour ces quelques pages utilisées.

Comment déterminer les pages privilégiées dont le cadre de page
de résidence figurera dans le TLB? Ce seront les pages les plus ré-
cemment utilisées. À chaque référence à la mémoire, le MMU dé-
clenche en parallèle deux méthodes de traduction d’adresse : consul-
ter le TLB pour voir si la page cherchée n’y figure pas, activer le
DAT pour parcourir la table des pages. Si la consultation du TLB
réussit, le DAT beaucoup plus lent est arrêté. Si elle échoue le DAT
poursuit la traduction jusqu’à son terme et en place le résultat dans
le TLB pour la prochaine fois.
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Où le DAT va-t-il placer le résultat de la traduction qu’il vient
d’effectuer ? À la place d’une autre entrée.

Pour être efficace, le TLB n’a pas besoin d’être très grand : en
fait, une taille étonnamment petite suffit, en général 64 entrées. Gé-
néralement, les systèmes à espaces adresse multiples évoqués à la
section précédent 4.4.4 mettent le TLB en échec, et chaque commu-
tation de contexte, qui entraîne un changement d’espace adresse,
nécessite la remise à zéro du TLB. Le plus surprenant est que le
TLB reste néanmoins efficace. Signalons que certains processeurs,
tel le MIPS R4000, utilisent un TLB étiqueté (tagged TLB), c’est-
à-dire que chaque entrée de TLB comporte l’identifiant de l’espace
adresse auquel elle appartient, ce qui évite la pénalité que nous
venons d’évoquer.

Ce dispositif est si efficace et résout une si grande proportion
des traductions d’adresses (plus de 99% !) que certains concepteurs
se sont dit que le DAT servait très rarement et qu’il suffisait de le
réaliser en logiciel, ce qui est beaucoup plus lent mais plus simple
et moins coûteux, et libère des nanomètres–carrés précieux sur le
circuit. Les premiers architectes à risquer cette audace furent ceux
des processeurs MIPS, et comme les résultats furent excellents ceux
des SPARC, des Alpha et des HP PA leur emboîtèrent le pas. Sur
ces processeurs le seul matériel spécialisé pour la mémoire virtuelle
est le TLB et sa logique de consultation.

Nous retrouverons d’autres dispositifs d’optimisation bâtis sur
le même principe : un dispositif rapide (et donc cher) pour traiter
une petite quantité de cas très fréquents, un dispositif plus lent
pour traiter la grande masse des cas à faible occurrence. C’est no-
tamment sur ce principe que reposent les dispositifs de cache, qui
constituent la hiérarchie de mémoire, et que nous verrons bientôt.
Ce qui est frustrant, c’est qu’aucune modélisation mathématique ne
rend compte à ce jour des optimisations considérables qu’ils pro-
curent.

4.4.6 Tables de pages inverses
Nous venons de voir qu’avec l’avènement des adresses sur 64

bits, et donc des espaces adresse de 264 octets, il nous faudrait des
tables de pages avec 252 entrées, soit, avec huit octets par entrée, 30
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millions de gibioctets 7. C’est impossible aujourd’hui et pour encore
pas mal de temps. Une solution, retenue sur les premières versions
de l’Alpha et de l’Itanium, est de réduire arbitrairement mais ra-
dicalement la taille mémoire adressable en limitant le nombre de
lignes du bus d’adresses, mais ce n’est guère satisfaisant.

Une solution à ce problème, dite des tables inverses, est la sui-
vante : au lieu d’avoir une table des pages avec une entrée par page
virtuelle, on a juste une table des cadres de page qui contient pour
chaque cadre la référence de la page virtuelle qu’il contient, cette
référence comportant le numéro de page virtuelle et l’identifiant du
programme propriétaire de l’espace adresse. L’avantage de la table
des cadres de pages, c’est qu’elle est beaucoup plus petite, et par
définition dans un rapport de taille avec la mémoire réelle de l’ordre
de un pour mille.

L’on a ainsi une table qui donne la correspondance cadre de page
physique – page de mémoire virtuelle, mais en général on cherche à
faire la conversion en sens inverse, et avec une telle table cela risque
d’être très laborieux : la seule solution consiste à examiner une par
une en séquence les entrées de la table, en espérant trouver notre
page plutôt vers le début. Cela semble désespérant, mais nous allons
être sauvés. Par quoi ? par le TLB, pardi. N’avons-nous pas vu, à
la section 4.4.5 il y a un instant, qu’il fournissait des traductions
virtuel – réel avec une efficacité étonnante et sans table des pages ?
Alors voilà...

Reste les cas résiduels des références non résolues par le TLB :
leur traitement doit être traité par le logiciel (système d’exploita-
tion), mais ces cas sont si rares que cela reste acceptable. Des mé-

7 La taille de la mémoire, principale ou auxiliaire, est exprimée en multiples de
1 024 octets naguère nommés k, pour kilo-octet, avec des multiples comme
le méga-octet, le giga-octet, etc. Cette dénomination avait l’inconvénient de
créer une confusion avec les multiples de 1 000 utilisés dans le cadre du Sys-
tème International. Une norme internationale promulguée par la Commis-
sion Internationale d’Électrotechnique (IEC) y a mis bon ordre en décembre
1998. Désormais k désigne 103 tandis que Ki (le « kibi ») désigne 210 = 1 024,
Mi (le mébi) désigne 220 = 1 048 576, Gi (le gibi) 230 = 1 073 741 824. Si
l’on compte en bits on aura un kibibit (1 024 bits, 1 Kib), un mébibit (1
Mib) (1 048 576 bits). Ces préfixes s’appliquent aux octets, soit en anglais
où octet se dit byte et où un mebibyte (1 MiB) vaut 1 048 576 octets, soit
en français où un gibioctet (1 Gio) vaut 1 073 741 824 octets. Ces nombres
bizarres sont des puissances de 2. On consultera à ce sujet avec profit
(mais sans trop se faire d’illusions sur l’adoption de cette norme) le site
http://physics.nist.gov/cuu/Units/binary.html.

http://physics.nist.gov/cuu/Units/binary.html
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thodes telles que les tables associatives (hash tables) sont de nature
à diminuer la pénalité qui en résulte.

4.4.7 Mémoire virtuelle segmentée
Les systèmes de mémoire virtuelle que nous avons décrits jus-

qu’ici utilisent des espaces adresse uniformes, c’est-à-dire découpés
en pages de tailles identiques, elles-mêmes regoupées par simple
raison de commodité de manipulation en segments de tailles iden-
tiques. Certaines régions de la mémoire virtuelle pourront être dé-
volues à un usage particulier, mais ceci ne se reflète pas dans la
structure de l’espace adresse, qui reste uniforme, et plus précisé-
ment linéaire : les adresses se succèdent comme la suite des nombres
entiers, avec des frontières de page tous les 4 096 octets et des fron-
tières de segment tous les 32 ∗ 4 096 = 131 072 octets, par exemple.

D’autres architectures de mémoire virtuelle ont été imaginées,
avec des segments de tailles variables, adaptés à des régions parti-
culières du programme, par exemple un segment pour le code du
programme, un segment pour les données initialisées au lancement
du programme, un segment pour les données non initialisées, un
segment de données non modifiables, un segment pour les struc-
tures de données créées par le système pour ce processus, etc. De
tels systèmes conservent en général une taille de page fixe, mais le
nombre de pages d’un segment est arbitraire. La gestion est plus
complexe, puisque les tables de pages deviennent elles aussi de taille
arbitraire.

L’archétype de ces systèmes à mémoire virtuelle segmentée est
Multics (voir chapitre 8). Les Unix modernes tels que Linux re-
courent à la notion de segment, mais elle est alors orthogonale à
la notion de page : l’espace adresse d’un processus est partagé en
segments (un pour le code du noyau, un pour les données du noyau,
un pour le code utilisateur, un pour les données utilisateur, un seg-
ment d’état de tâche par processus (TSS, Task State Segment), un
segment pour la table de descripteurs de segments). Par ailleurs
ces segments sont paginés ; l’impression est qu’ils ne servent pas à
grand’chose.

4.4.8 Petite chronologie de la mémoire virtuelle
La première réalisation de mémoire virtuelle avec pagination

date de 1961 et figure à l’actif de l’Université de Manchester, qui
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développait en collaboration avec le constructeur le système de l’or-
dinateur ATLAS de Ferranti. Le système de l’ATLAS était précur-
seur dans bien des domaines et surtout il fut l’objet de publications
très complètes.

En 1962 Burroughs (devenu depuis sa fusion avec Univac Uni-
sys) lançait son modèle B 5000, qui apportait les innovations sui-
vantes :

— utilisation de piles 8 pour gérer les données locales des pro-
cessus ; l’architecture de la machine comportait des instruc-
tions de gestion de pile ;

— mémoire virtuelle segmentée ;
— allocation dynamique de mémoire par demande de segment ;
— système écrit en langage évolué (Algol 60).
1961 vit les débuts du projet MAC dirigé par Fernando Corbató

au MIT, et dans ce cadre la réalisation du système CTSS (Com-
patible Time Sharing System), ancêtre de Multics, sur ordinateur
IBM 709 puis 7094. CTSS comportait un système de swap, qui re-
copiait sur mémoire auxiliaire les programmes mis en attente par
le système au profit de programmes réactivés et rechargés depuis
la mémoire auxiliaire vers la mémoire vive. Ce système de swap,
qui peut être considéré comme la mémoire virtuelle du pauvre, se
retrouve sur le PDP-1 de Digital mis au point en 1962 pour BBN
(Bolt, Beranek & Newman), un nom que nous retouverons au cha-
pitre consacré aux réseaux, puis sur beaucoup de machines de la
gamme PDP.

En 1963 la société française SEA dirigée par F.H. Raymond
réalisait pour sa machine CAB 1500 un système qui reposait sur
des principes différents, les noms généralisés.

En 1967 IBM réalise le modèle 360/67, qui était un 360/65 doté
des dispositifs de mémoire virtuelle que nous avons décrits plus
haut, avec des pages de 4 096 octets et en outre un dispositif logi-
ciel que l’on pourrait appeler hyperviseur, CP/67, que nous évoque-
rons au chapitre 10, qui permettait de simuler le fonctionnement
de plusieurs ordinateurs virtuels dotés chacun de son système.

En 1972 IBM généralise la mémoire virtuelle sur sa gamme 370.

8 La pile dont il est question ici n’est pas une pile électrique, mais une structure
de données qui évoque une pile d’assiettes, et dont nous donnerons une
description un peu plus loin.



Hiérarchie de mémoire 107

4.5 Hiérarchie de mémoire
4.5.1 Position du problème

La recherche d’informations dans des espaces de mémoire très
vastes nous a amenés à poser des questions de performance : par-
courir séquentiellement une table pour y chercher une information
quelconque demande l’exécution d’un nombre d’instructions pro-
portionnel à la longueur de la table. Dès que cette table devient
longue il faut trouver une solution plus subtile. C’est un problème
très fréquent en programmation.

Un schéma très général de solution possible, inspiré d’ailleurs
des méthodes exposées ci-dessus, est le suivant : si dans cette table
figurent d’une part une petite minorité d’informations très souvent
utilisées et de l’autre une majorité d’informations rarement utili-
sées, et que nous disposions d’un moyen d’identifier la petite mi-
norité active de notre stock d’information (le « working set »), il
serait alors possible de réaliser deux versions de la table : une pe-
tite table pour le working set, d’accès rapide parce que petite, et la
grande table complète, peu rapide d’accès mais rarement utilisée.
Lors d’une recherche on lancera simultanément la consultation dans
les deux tables, et que le meilleur gagne : si l’information cherchée
est dans la petite table, c’est elle qui « gagnera » (sauf si le résultat
est au début de la grande table), sinon on fera la recherche longue
dans la grande table. C’est l’idée de la hiérarchie de mémoires, une
mémoire petite et rapide en avant–plan d’une mémoire vaste, plus
lente mais complète.

Notre problème est un peu plus complexe : la composition du
working set varie dans le temps, une information très utile à un
instant va devenir inutile quelques microsecondes plus tard, cepen-
dant que d’autres informations vont sortir de l’ombre pour occuper
le devant de la scène. Il nous faudra disposer d’un algorithme de
remplacement des informations vieillies par de nouvelles vedettes.
Remarquons que cette idée de working set se marie bien avec la
constatation notée plus haut de la localité des traitements.

Le chapitre 2 nous a déjà procuré un tel exemple, un peu parti-
culier, de hiérarchie de mémoire : les registres du processeur ne sont
rien d’autre que des cases de mémoire incorporées à l’unité centrale
pour pouvoir être atteintes et modifiées plus rapidement. Les sec-
tions précédentes nous ont permis d’en voir deux autres exemples :
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— l’organisation de la mémoire virtuelle vise à ne maintenir en
mémoire réelle que les pages actives à un instant donné, (le
working set) et à reléguer en mémoire auxiliaire les pages
inactives ;

— le TLB conserve dans une toute petite table les traductions
des adresses en cours d’usage, ce qui satisfait plus de 99%
des demandes de traduction.

Le cas du TLB est spectaculaire parce que le rapport entre le
nombre d’adresses virtuelles possibles et le nombre de celles qu’il
conserve est énorme : pour un processeur 32 bits (quasiment une
antiquité...) chaque espace adresse comporte 220 pages de 4 096

octets et le TLB en indexe 64 = 26, soit si nous avons à un instant
donné 20 espaces adresse actifs (valeur très modeste) une sur 20×
16 384 = 327 680, et il résout néanmoins plus de 99% des défauts
de pages.

4.6 La technique du cache
Le mot cache, curieux retour au français d’un emprunt anglais,

suggère ici l’idée de cacher dans un coin (techniquement parlant,
dans une zone de mémoire petite mais à accès très rapide) pour
l’avoir sous la main une chose que l’on ne veut pas avoir à aller
chercher à la cave ou au grenier (i.e., dans la mémoire centrale,
vaste mais à accès lent par rapport à la vitesse du processeur),
pour gagner du temps. À moins qu’il ne s’agisse de l’image de la
chose, au premier plan d’une scène, qui cache la chose elle-même,
à l’arrière-plan.

4.6.1 Cache mémoire
Les processeurs modernes utilisent la technique du cache pour

les accès à la mémoire. De quoi s’agit-il ?
Supposons que l’accès du processeur à la mémoire par le bus

système se fasse en un temps t. Une petite quantité de mémoire
très rapide va être implantée sur le processeur proprement dit, ce
sera le cache de premier niveau (L1, pour Level 1) qui aura un temps
d’accès de t

40
(habituellement un ou deux cycles de processeur, soit

de l’ordre de la nano-seconde). Puis une quantité un peu moins
petite de mémoire un peu moins rapide va être connectée au bus
interne du processeur, avec un temps d’accès, par exemple, de t

10
.

Ce sera le cache de niveau 2, L2, avec un débit d’accès de quelques
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Figure 4.3 – Hiérarchie de mémoire d’Itanium

milliards d’octets par seconde (les ratios de temps d’accès indiqués
ici sont des ordres de grandeur vraisemblables).

Le cache L1 de l’Itanium 2 (2002), représenté par la figure 4.3,
contient 32 Kio de mémoire par cœur (16 Kio pour les données, 16
Kio pour les instructions) avec un délai d’accès (temps de latence)
de 2 cycles, son cache L2, qui est sur le même circuit (la même
puce) que le processeur, 256 à 1280 Kio par cœur avec un accès en
6 cycles, et il a un cache externe L3 de 1,5 à 24 mébioctets selon
les configurations avec un accès en 21 cycles.

L’accès à la mémoire principale se fait à un débit de de 2,1
gibioctets 9 par seconde par un bus à 133 Mhz.

Pour prendre un type de processeur plus récent, l’Intel Xeon
E3-1285 v3 avec quatre cœurs à 3,6 GHz, en géométrie 22 nm, pos-
sède 64 Kio de cache L1 et 256 Kio de cache L2 par cœur, et 8 Mio
de cache L3. On voit que si le pas de la gravure (usuellement repré-
senté par la longueur de la grille d’un transistor) et les vitesses de
processeur qui en résultent ont connu une évolution spectaculaire,
les données relatives aux tailles des caches ont évolué plus modé-

9 Cf. note 7 p. 104.
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rément. En effet, la localité des traitements (telle que définie à la
section 4.4.2) fait qu’agrandir inconsidérément les tailles de cache
ne procure que des gains de performance rapidement décroissants.

4.6.2 Hiérarchie de mémoire : données numériques
J’emprunte à Jeffrey Dean[39], architecte système chez Google,

le tableau des temps d’accès comparés (en nanosecondes) aux
différents niveaux de mémoire qu’il a présenté en 2009 à la
conférence Large Scale Distributed Systems and Middleware
(LADIS) et qui ont été actualisés 10 en 2018 (on notera que depuis
au moins 2010 les vitesses de processeurs n’augmentent plus, à la
suite d’une sorte d’accord d’armistice entre les industriels, parce
que la concurrence sur ce terrain menait à des évolution néfastes,
en termes de dissipation thermique essentiellement) :

Numbers Everyone Should Know (2018)
Register 0.25 ns
L1 cache reference 0.5 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Main memory reference 62 ns
Send 2K bytes over local network 88 ns
Compress 1K bytes with Zippy 2 000 ns
Read 1 MB sequentially from memory 5 000 ns
SSD random read 16 000 ns
Read 1 MB sequentially from SSD 78 000 ns
Round trip within same datacenter 500 000 ns
SAS/SATA Disk seek 3 000 000 ns
Read 1 MB sequentially from disk 1 000 000 ns
Send packet CA->Netherlands->CA 150 000 000 ns

4.6.3 Mise en œuvre du cache
Comment seront utilisés ces caches ? Leur utilité repose sur la

localité des traitements (cf. 4.4.2 p. 94) : on a observé qu’à une
échelle de temps petite pour l’observateur mais grande par rapport

10 https://people.eecs.berkeley.edu/~rcs/research/interactive_
latency.html

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
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à la vitesse du processeur, disons pendant l’exécution d’un sous-
programme moyen, le processeur accède toujours à peu près aux
mêmes zones de la mémoire. Donc si on charge ces zones dans le
cache on va accélérer les traitements.

L’algorithme de gestion du cache consiste à y charger toute
zone de mémoire demandée par le processeur à la place de la zone
la moins récemment utilisée de celles qui étaient déjà là, en spé-
culant sur le fait que si cette zone est demandée maintenant elle
va l’être souvent (des milliers de fois) dans les instants qui suivent
(quelques milli-secondes). La partie plus compliquée de l’algorithme
consiste à maintenir la cohérence entre les caches et la mémoire
principale par la réécriture des zones modifiées dans le cache. Le
lecteur trouvera dans le livre de Hennessy et Patterson [57] toutes
informations souhaitables sur ce mécanisme de hiérarchisation de
la mémoire. S’il est soucieux de se tenir au courant des derniers
développements techniques il devra s’abonner à l’excellente revue
Microprocessor Report [89]. Deux choses importantes doivent être
retenues à propos de la technique du cache : elle procure des aug-
mentations de performances très spectaculaires, et aucun modèle
général satisfaisant de son fonctionnement n’a pu être proposé à ce
jour.

4.7 Langage et mémoire
Le système d’exploitation alloue à chaque programme l’espace

de mémoire nécessaire à son exécution. Comment se présente cet es-
pace, du point de vue du programme ? Cela dépend du programme,
et singulièrement du langage de programmation utilisé, ou plus
exactement du traducteur. Mais auparavant il n’aura sans doute
pas été inutile de se remémorer les développements page 52 sur
la notion de sous-programme, qui permet de découper un grand
programme en entités plus maniables.

4.7.1 Langages à mémoire statique
Le cas le plus simple est celui des langages à gestion de mémoire

statique comme Fortran (nous parlons du Fortran IV traditionnel
ou de son successeur Fortran 77, pas du langage au baroquisme
ébouriffant qui porte aujourd’hui ce nom), pour les programmes
desquels la mémoire est allouée une fois pour toutes au lancement
du programme. Le texte du programme en langage machine et les
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variables sont à des emplacements fixes et ne sont pas extensibles,
c’est-à-dire que tous les noms présents dans le programme sont as-
sociés (liés) à des emplacements de mémoire lors de la compilation.
Le compilateur construit l’image binaire du programme traduit et
de ses zones de données, l’éditeur de liens assemble les différents
sous-programmes sans oublier les sous-programmes de bibliothèque
en effectuant les translations appropriées (voir à la page 91), et
le résultat est un fichier binaire exécutable prêt à être chargé en
mémoire pour s’exécuter.

De cette politique d’allocation de mémoire il résulte que les va-
riables locales d’un sous-programme sont au même endroit à chaque
activation du sous-programme.

Cette technique d’allocation a trois inconvénients :
1. la taille de chaque structure de donnée doit être connue une

fois pour toutes à la compilation et elle ne pourra plus varier
pendant l’exécution ;

2. les sous-programmes ne peuvent pas s’appeler eux-mêmes (ce
que l’on appelle récursion) parce que les objets locaux pour
chaque activation partageraient les mêmes emplacements de
mémoire ;

3. il n’est pas possible de créer des objets dynamiquement à
l’exécution.

et elle a deux avantages :
1. les programmes écrits dans des langages statiques peuvent

être rapides, parce qu’ils ne nécessitent pas de création de
structures de données pendant l’exécution, et parce que l’em-
placement fixe des objets permet l’usage de l’adressage direct,
plus efficace que l’adressage indirect ;

2. un programme à mémoire statique est par construction à
l’abri de l’échec par pénurie de mémoire en cours d’exécu-
tion.

4.7.2 Vecteur d’état d’un programme
Tout sous-programme s’exécute dans un contexte 11 qui com-

porte au moins les informations que nous avons mentionnées ci-

11 Le contexte que nous envisageons ici est celui du programme vu comme
la description d’un traitement. Il est distinct du contexte du programme
vu comme processus que nous avons évoqué aux section 3.11.1 et 3.11.2. Le
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dessus à la page 52 : l’adresse de la liste (éventuellement vide) des
arguments que lui aura transmis le programme appelant, l’adresse
de retour à laquelle il devra effectuer un branchement quand il se
sera terminé, l’adresse où déposer le résultat de son exécution. Il
faut y ajouter les variables internes (locales) au sous-programme.
Ces éléments de contexte constituent ce que nous appellerons vec-
teur d’état du (sous-)programme, et il s’agit donc d’une (petite)
collection de mots.

4.7.3 Langages à mémoire dynamique
Tous les langages ne sont pas, tel Fortran IV, confinés à une

mémoire statique. Les systèmes d’exploitation proposent depuis des
lustres des mécanismes et des appels système qui permettent à un
processus d’acquérir une zone de mémoire supplémentaire, et les
langages en font usage pour surmonter les limitations mentionnées
à la section 4.7.1.

Il y a deux grandes catégories de méthodes pour allouer de la
mémoire supplémentaire dynamiquement à un programme lors de
son exécution : sur la pile 12 et dans le tas. La plupart des langages
modernes utilisent les deux :

— on utilise généralement la pile pour les données qui tiennent
dans un mot (nombre, adresse, pointeur...) ou peu de mots,
doivent être traitées rapidement (liste d’arguments d’un

contexte du programme est créé et utilisé selon la logique du déroulement du
traitement, dans l’espace adresse de l’utilisateur, cependant que le processus
peut être interrompu à tout moment par un événement extérieur, asynchrone
et sans respect pour le traitement en cours. La restauration du contexte du
processus, qui comporte notamment les contenus du PSW et des registres,
permet évidemment de retrouver le contexte du programme qui réside dans
son espace adresse.

12 On notera que contrairement à la plupart des systèmes actuels, l’architecture
des mainframes IBM n’utilise pas la structure de pile. Dans une interview
aux Communications of the ACM (CACM) de novembre 2015, Fred Brooks,
architecte en chef du système pour le logiciel (Gene Amdhal était son vis-
à-vis pour le matériel) explique pourquoi : au début ils étaient partis pour
une architecture à pile, en suivant l’exemple de Burroughs. Mais le problème
était la gestion des adresses pour les plus petites machines de la gamme, dont
le chemin de données était large de 8 bits, et qui n’avaient en réalité que
deux registres, les autres étant simulés par le microcode. La manipulation
d’adresses de 24 bits aurait entraîné trop de chargements et déchargements
de données en fait inutiles. D’où le choix d’un adressage par registre de base
(4 bits) + déplacement (12 bits), plus parcimonieux.
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sous-programme), et qui en outre ne doivent pas avoir une
durée de vie qui excède la terminaison de l’exécution cou-
rante du sous-programme ;

— le tas est utilisé pour les données de taille quelconque
et éventuellement variable (tableau, chaîne de caractères,
liste...), ainsi que pour les données qui doivent survivre au
sous-programme courant.

Nous allons examiner ces deux techniques. Mais ne perdons pas
de vue qu’il s’agit toujours d’allouer de la mémoire disponible dans
l’espace adresse du processus : quand cet espace-adresse sera saturé,
les tentatives d’allocation déclencheront des erreurs.

Allocation de mémoire sur la pile

Dans un langage à gestion de mémoire dynamique, le système,
pour chaque appel de sous-programme, crée un vecteur d’état (acti-
vation record, ou activation frame en anglais ; il contient, rappelons-
le, les arguments passés par le programme appelant, l’adresse de
retour, l’adresse du résultat éventuel, et les variables locales), et le
détruit lorsque la procédure se termine.

Pour réaliser cela le compilateur utilise une structure de don-
nées appelée pile (en anglais stack) : les vecteurs d’état successifs,
au fur et à mesure de leur création, vont être empilés comme des
assiettes, puis dépilés au fur et à mesure de la terminaison des
sous-programmes correspondants. À chaque instant un pointeur
permet de connaître le sommet de la pile, qui correspond au sous-
programme actif à cet instant.

Pour empiler un vecteur c’est simple : on place les mots de mé-
moire qui le constituent dans la zone qui commence à l’adresse im-
médiatement supérieure à la valeur courante du pointeur de pile,
puis on additionne à celui-ci la taille du nouveau contexte afin qu’il
pointe bien sur le sommet de la pile.

Pour dépiler un vecteur c’est encore plus simple, il suffit de
soustraire du pointeur de pile la taille du vecteur à supprimer. En
général, le résultat renvoyé par un sous-programme qui se termine
aura été placé dans la pile, à un endroit convenu du vecteur d’état
du programme appelant, c’est-à-dire « en dessous » du vecteur cou-
rant.

Pourquoi se compliquer la vie à faire tout cela, qui prend du
temps, diront les adeptes de Fortran, les physiciens ? Pour avoir
une organisation plus fine et plus sûre de l’information, pour faci-
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liter le travail du programmeur et lui éviter des risques d’erreur,
notamment par les traits suivants :

1. Différentes activations d’un sous-programme peuvent coexis-
ter, avec chacune son vecteur d’état distinct, ce qui permet
notamment à un sous-programme d’être récursif, c’est-à-dire
de s’appeler lui-même.

2. La taille d’une structure de données locale peut dépendre des
arguments passés au sous-programme.

3. Les valeurs, associées aux noms locaux, contenues dans le vec-
teur d’état stocké sur la pile, sont détruites à la fin de l’acti-
vation, ce qui élimine une cause d’erreur de programmation.

4. Le vecteur d’état d’un sous-programme appelé ne peut plus
exister après la terminaison de l’appelant.

Allocation de mémoire sur le tas

La plupart des systèmes offrent un appel système pour obtenir
une allocation de mémoire, d’une taille quelconque déterminée par
le programme à l’exécution, prise parmi les pages disponibles de
l’espace adresse du processus. Pour l’OS 360 il s’agit de GETMAIN,
pour UNIX de brk(), plus connu sous son habillage grand public
malloc(). La mémoire demandée est prise dans une zone de l’espace
adresse du processus appelée le tas(heap), par opposition à la pile
et le système renvoie au programme un pointeur sur la zone allouée,
qui, lui, réside généralement dans la pile.

L’assembleur et les langages de bas niveau comme C et C++
utilisent des fonctions explicites comme malloc() pour obtenir de
la mémoire dans le tas et lui faire correspondre les structures de
données que le programmeur veut y placer, cependant que des lan-
gages dotés d’un plus haut niveau d’abstraction font ce travail en
coulisse à l’insu du programmeur. Les cadres de pages ne sont ef-
fectivement affectés au processus que lorsque celui-ci génère une
exception en essayant d’accéder à l’une de leurs adresses virtuelles.

Si l’allocation est explicite, la libération doit l’être aussi : imagi-
nons un sous-programme appelé dans une boucle et qui à chacune
de ses exécutions demande une allocation de mémoire dans le tas ;
le pointeur qui permet d’y accéder est sur la pile et il sera donc
libéré à chaque terminaison, mais il n’en va pas de même pour la
mémoire obtenue sur le tas, dont rien ne permet de justifier la libé-
ration si le programme ne fait pas appel explicitement à la fonction
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free(), qui remet le pointeur de début de la mémoire libre à sa
valeur antérieure. Et il est parfois difficile de savoir s’il est légitime
de le faire.

En effet dans un programme complexe plusieurs sous-
programmes peuvent faire référence à la même zone de mémoire
allouée. Imaginons un sous-programme qui obtient une zone de mé-
moire, y place des données et renvoie comme résultat à l’appelant,
en se terminant, la valeur du pointeur sur cette zone : le pointeur
sur la zone obtenu initialement était sur la pile et disparaît avec le
sous-programme, mais l’appelant en a récupéré la valeur, qu’il peut
alors passer en argument à de nombreux autres sous-programmes,
ce qui fait qu’à un instant donné un nombre indéterminé de sous-
programmes possèdent dans leur vecteur d’état un pointeur sur
cette zone dynamique. Quand pourra-t-on la libérer ? Quand plus
aucun pointeur actif n’y fera référence. Comment le saura-t-on ?
C’est un problème difficile, dépourvu de solution simple, pour le-
quel existent plusieurs algorithmes heuristiques.

Gestion de la mémoire dynamique

Les langages évolués contemporains peuvent au bout du compte
être classés en deux catégories : les langages à gestion de mémoire
explicite comme C, C++, Pascal, où le programmeur est respon-
sable de l’allocation et de la libération des zones de mémoire obte-
nues dynamiquement sur le tas, et les langages à gestion de mémoire
automatique, comme Lisp, Smalltalk, Scheme, Caml ou Java, où la
mémoire est allouée implicitement quand la création d’un objet le
nécessite. Les langages de la seconde catégorie mettent en œuvre
un algorithme heuristique de libération des zones de mémoire al-
louées et devenues inutiles ; ces algorithmes sont connus sous le nom
de ramasse-miettes, ou glaneur de cellules (garbage collector), en
abrégé GC ; ils s’exécutent périodiquement, de manière asynchrone
par rapport au programme lui-même. Il existe une réalisation de
Scheme pour Macintosh, MacGambit, qui offre au programmeur
une présentation visuelle très suggestive du déclenchement et de
l’exécution du GC.

Signalons le cas intéressant du langage Ada, dont toute la lo-
gique interne suggère la présence d’un GC, prévu d’ailleurs par
les concepteurs, mais le langage a trouvé son public dans la com-
munauté du temps réel, c’est-à-dire des ingénieurs qui écrivent
des systèmes pour piloter Ariane V ; les auteurs de tels systèmes
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sont très rétifs à l’idée du déclenchement asynchrone du GC, par
exemple au moment de la mise à feu du second étage de la fusée
lanceuse. Cette réticence a longtemps retenu les auteurs et réali-
sateurs d’Ada, qui n’avait pas de GC mais à la place la procédure
générique UNCHECKED_DEALLOCATION, ce qui veut tout dire. Les versions
récentes de la norme Ada (2005, 2012) prévoient un GC, qui peut
être désactivé. La norme autorise la publication de compilateurs
sans GC.

Les langages à gestion de mémoire explicite (C, C++) sont des
langages de bas niveau, qui donnent au programmeur le contrôle
d’objets très proches du matériel, en l’occurrence des pointeurs qui
sont en fait des adresses mémoire. Ce contrôle est indispensable
pour écrire des systèmes d’exploitation, des pilotes de périphérique,
des programmes très dépendants du matériel. Mais pour écrire des
programmes de résolution de systèmes d’équations, de comparai-
son de séquences d’ADN ou de construction d’arbres généalogiques,
cela ne se situe pas au niveau d’abstraction approprié et oblige le
programmeur (qui est peut-être un mathématicien, un biologiste ou
un généalogiste) à acquérir des compétences dont un langage mieux
adapté devrait le dispenser, d’autant plus que l’expérience tend à
montrer que ces compétences sont acquises incomplètement et que
la maîtrise des programmes qui en résulte est approximative.

Les langages à GC comme Scheme ou Java sont des langages
plus abstraits (par rapport au réel, l’ordinateur) et de ce fait plus
expressifs et plus utilisables pour des tâches moins tournées vers le
système d’exploitation. L’argument de la performance est régulière-
ment avancé en faveur des langages à gestion de mémoire explicite :
outre que cet argument est loin d’être prouvé, il apparaît que les
deux langages qui ont eu, et de loin, le plus de succès au cours
des cinq dernières années du second millénaire sont Java et Perl,
deux langages connus pour leur grande lenteur, ce qui montre que
la rapidité n’a, la plupart du temps, aucune importance avec les
processeurs actuels.

UNCHECKED_DEALLOCATION
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Introduction
Les chapitres précédents nous ont montré l’activité frénétique

des processus qui se bousculent pour obtenir le contrôle d’un proces-
seur désespérément séquentiel et de l’espace mémoire qui pour être
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virtuel n’en est pas moins irrémédiablement fini. De cette activité
résulte la construction de structures qui peuvent être grandioses,
mais qui resteraient à jamais imperceptibles aux humains si l’ordi-
nateur ne comportait des dispositifs destinés à communiquer avec
le monde extérieur : écrans, claviers, haut-parleurs, joysticks, im-
primantes etc. Nous ne nous attarderons pas sur le fonctionnement
de ces appareils et sur la façon dont le système d’exploitation les
actionne, non que ce sujet soit dédaignable, mais parce qu’il est
tout compte fait assez peu différent (en plus simple) du fonction-
nement des mémoires auxiliaires sur disque magnétique que nous
allons examiner maintenant.

5.1 Mémoire auxiliaire
Ces structures magnifiques construites dans l’espace immense de

la mémoire virtuelle par des processus qui accomplissent un milliard
d’actions par seconde, qu’en reste-t-il lorsque l’on interrompt l’ali-
mentation électrique de l’ordinateur, ou même simplement lorsque
le processus se termine ? Rien. La technique employée actuellement
pour réaliser la mémoire centrale repose sur des bascules à semi-
conducteurs dont l’état dépend de la tension électrique aux bornes,
et disparaît sans recours en l’absence de celle-ci. Il n’en a pas tou-
jours été ainsi : jusque dans les années 1970 la technologie de mé-
moire dominante reposait sur une invention d’An Wang de 1950 et
utilisait des tores de ferrite magnétisés. Un courant de commande
créait une magnétisation dont l’orientation déterminait la valeur
du bit, 0 ou 1. Le champ magnétique subsistait à l’interruption de
l’alimentation électrique, ce qui permettait théoriquement de re-
trouver l’état de la mémoire au redémarrage. Mais cette possibilité
était rarement utilisée : la mémoire était petite, les champs magné-
tiques étaient susceptibles aux perturbations créées par les courants
de rupture lors de l’arrêt de la machine, le redémarrage du système
d’exploitation comportait des opérations nombreuses qui utilisaient
elles-mêmes la mémoire... Bref, si l’on voulait conserver les données
et les résultats élaborés par le programme pendant son exécution,
et cette conservation apparaissait bien nécessaire, il fallait d’autres
dispositifs de mémoire dite auxiliaire, par opposition à la mémoire
centrale.

Le type le plus répandu de mémoire auxiliaire est le disque ma-
gnétique. D’autres technologies ont vu le jour, mais, comme dans le
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domaine des processeurs, une technologie s’est développée avec un
tel succès que les autres ont été éclipsées, peut-être provisoirement
d’ailleurs. La mémoire à bulles magnétiques connaîtra peut-être le
renouveau, notamment dans les environnements où la présence de
courants électriques n’est pas souhaitable, en conjonction avec les
processeurs fluidiques, mais aujourd’hui leurs performances exces-
sivement inférieures à celles obtenues par les moyens classiques les
condamnent à l’oubli. Quant aux calculateurs quantiques ou biolo-
giques, ce sont des objets de recherche théorique bien éloignés d’une
éventuelle réalisation industrielle.

5.1.1 Structure physique du disque magnétique
Nous n’entrerons pas dans la description détaillée du disque

magnétique. Disons seulement ceci. Il comporte généralement plu-
sieurs plateaux circulaires fixés en leur centre sur un axe, comme
on peut le voir sur la figure 5.1 p. 121. Chaque face d’un plateau
est recouverte d’une substance magnétisable assez semblable à celle
qui revêt la bande d’une cassette de magnétophone. Chaque sur-
face est survolée par une tête de lecture-écriture constituée d’un
électro-aimant. Pour écrire, le dispositif de commande envoie dans
le bobinage de l’électro-aimant un courant de sens et d’intensité
propre à créer un champ magnétique qui va inscrire sur la surface
du disque un bit à 0 ou à 1. Pour lire, l’électro-aimant va se laisser
traverser par le champ magnétique du bit inscrit sur la surface, ce
qui va créer dans son bobinage un courant induit que le dispositif
de commande va interpréter comme un 0 ou un 1.

Les bits sont situés sur des pistes concentriques, c’est-à-dire que
pendant une opération de lecture ou d’écriture la tête est fixe au-
dessus de la surface du disque, jusqu’à la fin du traitement de la
piste, puis elle se déplace radialement, par exemple jusqu’à survoler
la piste voisine. C’est différent des platines de lecture des disques
vinyle : la tête ne touche pas le disque. Et contrairement aux CD-
ROMs et aux disques vinyl, il n’y a pas une piste en spirale mais
plusieurs, concentriques.

Chaque piste est découpée en secteurs. Une donnée est repé-
rée par son numéro de piste depuis la plus extérieure (appelé nu-
méro de cylindre, parce que l’ensemble des pistes de même rang,
situées à la verticale l’une de l’autre, constitue un cylindre), son
numéro de plateau (ou de tête de lecture, ce qui revient au même),
le numéro du secteur qui la contient et le rang de l’octet dans le
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Figure 5.1 – Organisation physique d’un disque

secteur. Chaque opération d’accès physique au disque transfère un
ou plusieurs secteurs d’un coup, c’est le logiciel (du contrôleur ou
du système d’exploitation) qui découpe ou assemble les données à
l’intérieur des secteurs.

Les plateaux et les têtes de lecture-écriture sont enfermés dans
une enceinte scellée, le HDA (Head-Disk Assembly), mais jusque
dans les années 1970 les piles de disques étaient amovibles, ce qui
diminuait beaucoup la fiabilité.

Le disque dur est un support de données à accès direct, par
opposition à une bande magnétique par exemple qui est un support
à accès séquentiel, c’est-à-dire que les blocs de données enregistrés
sur une bande sont accessibles les uns après les autres dans l’ordre
selon lequel ils ont été écrits ; tandis que sur un disque chaque
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secteur est accessible individuellement. Le logiciel (en l’occurrence
le système) donne au contrôleur un numéro de secteur ou de bloc,
le contrôleur place les têtes magnétiques au-dessus du bon cylindre,
sélectionne la tête correspondant au bon plateau et attend que le
bon secteur passe dessous. Les données sont lues et envoyées au
système.

Actuellement tous les contrôleurs présentent au système un
adressage linéaire uniforme des secteurs, c’est-à-dire que tous les
secteurs sont numérotés en séquence. Le contrôleur fait son affaire
de traduire ce numéro d’ordre en numéro de cylindre, numéro de
tête de lecture, numéro de secteur. Le contrôleur dispose aussi d’une
mémoire tampon (buffer) assez vaste pour regrouper et optimiser
les accès physiques.

Un disque de gros ordinateur à la fin des années 1960 pou-
vait contenir 14 millions de caractères, avec un diamètre de 14
pouces (36 cm) et une dizaine de plateaux, soit à peu près 15 cm
de haut. En 2018 les disques récents pour serveur peuvent avoir
une capacité de 4 000 milliards de caractères avec un diamètre de
3,5 pouces (9cm) et trois plateaux (2,5 cm d’épaisseur totale). Les
temps d’accès moyens ont beaucoup moins progressé, et sont de
l’ordre de 4 millisecondes pour un accès aléatoire comportant un
déplacement des têtes de lecture et une demi-rotation. Les vitesses
de rotation, longtemps de 3 600 tours/minute, atteignent aujour-
d’hui 15 000 tours par minute. Les débits de transfert atteignent
les cent millions de caractères par seconde. Dans ce domaine des
performances il convient de noter que les temps d’accès peuvent
varier considérablement selon le contexte d’utilisation, et que ces
variations sont mises à profit par les publicités de certains ven-
deurs pour annoncer des chiffres à étudier avec précaution. Ainsi
des temps d’accès moyens de 2 ms ne sont possibles que lors d’accès
séquentiels où les secteurs d’une même piste sont lus successivement
avec des déplacements de tête rares, à la fin de chaque piste, ce qui
ne correspond pas à un accès aléatoire.

5.1.2 Stockage SSD
De plus en plus se généralisent les disques SSD (pour Solid-State

Drive), qui ne sont en fait pas des disques, mais de la mémoire
« Flash » analogue à celle des clés USB, c’est-à-dire sans pièce mé-
canique mobile, ce qui assure d’excellentes performances, en contre-
partie d’une capacité plus faible à cause du prix plus élevé de ce
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type de support (d’un facteur 6 à 8 en 2018). Le temps d’accès ty-
pique est de l’ordre de 0,1 ms, et il est constant du fait de l’absence
de déplacement de pièces mécaniques. Les débits de transfert at-
teignent les six cent millions de caractères par seconde (six fois ceux
des meilleurs disques classiques). La capacité peut atteindre 4 000
milliards de caractères (4 téraoctets), mais le coût est élevé (0,33
euro par gigaoctet, contre 0,10 dollar en technologie classique).

Les premiers disques SSD, par souci de compatibilité, étaient do-
tés d’interfaces héritées des disques durs traditionnels (SATA, SCSI,
cf. ci-dessous section 5.3 p. 140), mais la tendance est à l’adoption
des interfaces NVMe (Non-Volatile Memory express), directement
raccordées au bus PCI Express, lancées en 2011 par un consor-
tium qui regroupe tous les principaux industriels du stockage, et
qui s’affranchit des contraintes héritées des caractéristiques méca-
niques des disques traditionnels. En effet, avec une mémoire à base
de composants électroniques sans pièces mécaniques mobiles, nul
besoin de tenir compte des déplacements de têtes de lecture pour
ordonnancer les accès, il est possible d’accéder simultanément à plu-
sieurs emplacements physiques éloignés l’un de l’autre, par contre
il faut veiller à minimiser le nombre d’écritures pour éviter l’usure
des composants, qui ne peuvent supporter qu’un nombre limité de
cycles d’écriture-effacement.

Pour un exposé plus détaillé des caractéristiques des mémoires
SSD et des méthodes de gestion mises en œuvre par le système d’ex-
ploitation et par le micrologiciel embarqué qui les pilote, on pourra
se reporter au chapitre que leur ont consacré Youngbin Jin et Ben
Lee dans un numéro d’Advances in Computers [65]. La tendance
actuelle (2019) s’oriente vers la possibilité offerte au système d’ex-
ploitation et aux logiciels d’application (on pense aux Systèmes de
Gestion de Bases de Données, ou SGBD) d’interagir avec le micro-
logiciel du SSD et de lui déléguer certaines fonctions, par exemple
le contrôle des autorisations d’accès aux données ou certaines opé-
rations d’indexation et d’extraction des SGBD.

5.1.3 Visions de la mémoire auxiliaire
Dès l’origine il y a eu deux visions de la mémoire auxiliaire.

La première la considère comme une extension moins rapide et de
plus grande capacité de la mémoire centrale, avec une propriété
supplémentaire : la persistance. Ce serait un peu comme si, après
la terminaison d’un processus, le contenu de son espace de mé-
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moire virtuelle était conservé en mémoire auxiliaire de pages pour
un usage ultérieur par le même programme ou par un autre. Le
processus en se terminant aurait soin de laisser dans cet espace de
mémoire des données pertinentes et dont la conservation soit utile.

La seconde vision considère les données persistantes comme fon-
cièrement hétérogènes au contenu de la mémoire centrale. La notion
de « fichier », métaphore qui sous-tend cette vision, est celle d’un
employé administratif, des services fiscaux par exemple, qui calcule-
rait les impôts d’une population de contribuables : il disposerait en
entrée du fichier des personnes imposables, avec une fiche par per-
sonne, et par ses calculs il constituerait en sortie un fichier d’avis
d’imposition, avec un avis par contribuable. Ce fichier en sortie
serait transmis en entrée au service du courrier, lequel après mise
sous pli et affranchissement le transmettrait à la poste, etc. On voit
que le contenu des fichiers n’a pas grand-chose de commun avec le
contenu de la mémoire de l’employé, qui incidemment pour faire
son travail a recours à une autre fichier, le volume du Code général
des Impôts.

Cette seconde vision introduit donc un type d’objet supplémen-
taire, le fichier. La naissance de la notion de fichier s’explique his-
toriquement pour deux raisons. Incarner dans un ordinateur réel
la vision de la mémoire auxiliaire comme extension de la mémoire
centrale butait jusqu’à tout récemment sur des obstacles techniques
importants dûs à la difficulté de réaliser des mémoires et des disques
de capacité suffisante et de sûreté de fonctionnement assez stable
pour y conserver de grands volumes de données. Ensuite, lorsque
dans les années 1960 l’informatique a commencé à être utilisée pour
la gestion des entreprises et des administrations, elle a rencontré des
habitudes de travail où les données étaient justement organisées
sous forme de fichiers de cartes perforées traitées par des machines
mécanographiques 1, et c’est assez naturellement que la notion de
fichier s’est transposée à l’informatique.

D’expérience la notion de fichier n’est pas d’une intuition facile.
Les difficultés qui l’accompagnent ne sont pas uniquement pédago-
giques, en témoignent le soin que mettent les informaticiens théo-

1 Une thèse historique discutable situe l’origine de l’informatique dans la mé-
canographie. Cette thèse a pris naissance dans l’entourage des grandes entre-
prises mécanographiques qui se sont converties à l’informatique de gestion,
comme IBM et Bull.
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riciens à éviter d’en parler et la grande hétérogénéité des errances
qui caractérisent ses réalisations techniques.

Considérer la mémoire auxiliaire comme un prolongement per-
sistant de la mémoire centrale, conformément à la première vision
évoquée ci-dessus, est beaucoup plus simple à tout point de vue.
Qui n’a eu l’occasion, en portant secours à un utilisateur néophyte,
de l’entendre parler de son document « en mémoire » sans pou-
voir distinguer la mémoire centrale du disque dur ? Dès les années
1960 les auteurs du système Multics avaient choisi de doter leur sys-
tème d’une mémoire virtuelle de grande taille, dont une partie était
constituée de données persistantes sur disque magnétique, chargées
en mémoire centrale en tant que de besoin. C’était très élégant et
simple, mais la technologie électronique de l’époque condamnait un
tel système à la lenteur et à une relative inefficacité, et de surcroît
cette solution contrariait les habitudes déjà prises par la corpora-
tion des informaticiens.

Au cours des années 1970 sont apparus les systèmes de gestion
de bases de données (SGBD), destinés à perfectionner la notion
de fichier en dotant une collection de fichiers d’un ensemble de
logiciels et d’index qui en permettent une vision et une gestion lo-
giques, globales et cohérentes. L’idée générale est simple : imaginons
le système de gestion d’une bibliothèque, autre monde de fichiers.
Nous aurons un fichier des auteurs, un fichier des ouvrages, un fi-
chier des éditeurs, un fichier des sujets, etc. Un ouvrage peut avoir
plusieurs auteurs, plusieurs éditeurs, plusieurs sujets, mais chaque
information n’est enregistrée qu’une fois et les logiciels et les in-
dex permettent de retrouver, en balayant les fichiers, tous les livres
de tel auteur ou sur tel sujet, sans avoir à écrire un programme
spécial à cet effet. L’unicité d’enregistrement de chaque donnée (la
non-redondance) concourt à garantir la cohérence de la base.

La commodité apportée par les bases de données dans la gestion
des informations persistantes a donné l’idée de créer des systèmes
d’exploitation entièrement construits autour d’un SGBD. Ce furent
essentiellement le système Pick et la Série 3 d’IBM, dont la postérité
a franchi le changement de millénaire sous le nom d’AS/400. Pick,
l’œuvre de Richard Pick, était un système excellent pour la gestion
de toutes sortes d’objets, mais la corporation des informaticiens
a eu sa peau. Il faut dire que Pick apportait une telle simplifica-
tion à la gestion que sa généralisation aurait obligé une quantité
de programmeurs occupés à des tâches banales et répétitives, dé-
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sormais réalisables par des non-informaticiens, à trouver un travail
plus exigeant.

Aujourd’hui les recherches dans le domaine des systèmes d’ex-
ploitation basés sur une mémoire persistante se poursuivent, et nous
pensons que leur succès serait la source de progrès notables dans
la facilité d’usage des ordinateurs par les humains. Nous y revien-
drons.

5.2 Système de fichiers
Puisque tous les systèmes d’exploitation disponibles pratique-

ment aujourd’hui utilisent des fichiers, nous allons décrire leur orga-
nisation. Nous prendrons comme exemple le système de fichiers des
systèmes Unix ou Linux, qui à défaut d’une efficacité foudroyante
a l’avantage de la simplicité et de l’élégance.

Pour Unix un fichier est une suite de caractères, un point c’est
tout. Le programme qui accède au fichier reçoit les caractères les
uns après les autres comme un flux, et c’est au programmeur d’avoir
prévu les actions nécessaires pour reconnaître dans ce flux des struc-
tures de données plus complexes qu’il pourra organiser et traiter.

Les caractères qui constituent ce flux séquentiel qu’est le fichier
résident sur disque dur, où ils occupent un certain nombre de pistes
elles-mêmes découpées en secteurs (voir la figure 5.1). Un secteur
contient généralement 512 caractères. Les secteurs qui constituent
un fichier peuvent être physiquement consécutifs sur le disque, mais
ce n’est pas forcément le cas. Pour retrouver un fichier, il faut un
système de répertoire : chaque fichier possède un nom et le réper-
toire permet de faire correspondre au nom un emplacement sur le
disque (cylindre-piste-secteur), ou plus exactement une collection
d’emplacements. Pour éviter un trop grand morcellement les sec-
teurs de 512 octets peuvent être alloués à un fichier par blocs de
taille supérieure, en général pas plus de 16 secteurs par bloc, soit
8 192 octets.

5.2.1 Structure du système de fichiers Unix
Notion de système de fichiers

Pour utiliser un disque avec Unix, avant de pouvoir y écrire
des fichiers, il faut y installer un ou plusieurs systèmes de fichiers.
Ce terme, système de fichiers, désigne à la fois le principe d’or-
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ganisation des fichiers, les éléments de logiciel qui implémentent
(réalisent) ce principe, et un ensemble de fichiers organisés selon
ce principe. Dans le cas où plusieurs systèmes de fichiers (au sens :
ensemble de fichiers) résident sur le même disque, celui-ci sera par-
tagé en partitions, chacune constituée de cylindres contigus et vue
par le système comme si elle était un disque physique. Chaque par-
tition reçoit un système de fichiers. Il existe aujourd’hui pour Unix
des systèmes de fichiers (au sens : principe d’organisation et logi-
ciels pour l’incarner) qui permettent à une partition de s’étendre
sur plusieurs disques et de changer de taille dynamiquement, mais
nous nous en tiendrons ici au système de fichiers classique de Unix,
tel ext4 pour Linux 2. Il faut aussi mentionner le fait que les contrô-
leurs de disques modernes dissimulent de plus en plus au système
la structure physique du disque : ils font leur affaire de la gestion
des pistes et des cylindres, qu’ils optimisent, et présentent le disque
au système comme une séquence de blocs logiques simplement re-
pérés par leur numéro d’ordre (pour les PCs cette façon de voir
les disques se nomme LBA, comme Linear Block Addressing). Pour
compléter cet assaut d’abstraction en marche, les Unix modernes
comme Linux permettent l’utilisation simultanée de systèmes de
fichiers différents, comme par exemple les systèmes VFAT de Win-
dows 98 ou NTFS de Windows 2000, dont les particularités sont
cachées par un système de fichiers virtuel (VFS) qui présente aux
autres éléments du système une interface uniforme, manipulée par
des commandes identiques que VFS exécute au moyen d’opérations
adaptées à chaque système de fichiers particulier, dont le détail est
dissimulé à l’utilisateur. On dit que le traitement de ces systèmes
de fichiers conformément à leur organisation particulière est pour
l’utilisateur rendu « transparent », terme dont on observera qu’en
informatique il est synonyme d’opaque.

La i-liste

L’origine de toute information sur le contenu d’un système de
fichiers est le super-bloc, qui comporte notamment les données sui-

2 Les systèmes de fichiers tels que ext4 sont « classiques » au sens où ils
diffèrent de l’archaïque UFS ; ext4 (ainsi que son prédécesseur ext3) permet
la journalisation des opérations (cf. ci-dessous section 5.4.1) et l’extension
dynamique de partitions étendues sur plusieurs disques physiques. L’ancêtre
commun des systèmes classiques est FFS (Fast File System), créé pour Unix
BSD par Marshall Kirk McKusick .
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vantes : taille du système de fichiers, nombre de blocs libres, début
de la liste des blocs libres. Comme le super-bloc contient des in-
formations vitales pour la validité du système de fichiers, il est
reproduit en plusieurs exemplaires à des emplacements convenus.
La structure d’un système de fichiers ext4 est représentée par la
figure 5.2.

Bloc

d’amorçage

Super−

bloc

Descripteurs

du groupe

Bitmap du

groupe de blocs

Bitmap

d’i−noeuds

Table

d’i−noeuds

Groupe de blocs n° 0 Groupe de blocs n° n

Blocs de données

Figure 5.2 – Structure d’un système de fichiers Ext4 et d’un groupe de blocs

Le super-bloc pointe sur une autre structure de données cru-
ciale, la i-liste (i pour index), qui est en quelque sorte une carte
du système de fichiers, permettant d’y retrouver les fichiers. Pour
les utilisateurs de tel ou tel autre système d’exploitation, la i-liste
correspond à la FAT-table de Windows 98 ou à la MFT de NTFS,
le système de fichiers de Windows 2000, ou encore à la VTOC (Vo-
lume table of contents) des grands systèmes IBM. Les éléments de la
i-liste sont appelés i-nœuds. La i-liste doit refléter à chaque instant
la structure logique et le contenu du système de fichiers, et comme
celui-ci change à tout moment, au fur et à mesure que des fichiers
sont créés, détruits, agrandis ou rétrécis, la i-liste doit posséder une
structure très flexible.

Chaque fichier est décrit par un i-nœud, qui doit permettre d’en
retrouver tous les fragments, puisque, comme nous l’avons dit plus
haut, les blocs qui constituent un fichier ne sont pas forcément conti-
gus, et comment en serait-il autrement d’ailleurs, puisque lorsqu’on
agrandit un fichier les blocs qui viennent à la suite ont pu être
utilisés entre-temps. Un i-nœud comporte :

— douze pointeurs directs, qui donnent l’emplacement sur le
disque de douze blocs de données (cas de Linux, pour
d’autres Unix ce peut être dix) ;
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— un pointeur indirect, qui pointe sur un bloc de pointeurs
directs, qui eux-mêmes pointent sur des blocs de données ;

— un pointeur double indirect, qui pointe sur un bloc de poin-
teurs indirects, qui eux-mêmes pointent sur des blocs de
pointeurs directs, qui eux-mêmes pointent sur des blocs de
données ;

— un pointeur triple indirect, qui pointe sur un bloc de poin-
teurs doubles indirects, qui eux-mêmes pointent sur des
blocs de pointeurs indirects, qui eux-mêmes pointent sur des
blocs de pointeurs directs, qui eux-mêmes pointent sur des
blocs de données.

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Bloc de
données

Atributs du fichier : droits
d’accès, propriétaire, ...

direct

12 blocs  à adressage

vers blocs à adressage indirect

vers blocs à double indirection

vers blocs à triple  indirection

Bloc 
indirect

Figure 5.3 – Structure d’i-nœud

Si le fichier tient dans moins de douze blocs (et c’est le cas de
la majorité des fichiers), il sera décrit par les pointeurs directs du i-
nœud, et les pointeurs indirects ne seront pas utilisés, mais on voit
que cette structure géométrique permet de décrire un très grand
fichier (voir figure 5.3).
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Avec des blocs de 4 kibioctets 3 (4 096 octets), chaque pointeur
tient sur quatre octets, et nous pouvons avoir :

— direct : 12x4Ki = 48 kibioctets ;
— indirect : 1024x4Ki = 4 mébioctets ;
— double indirect : 1024x1024x4Ki = 4 gibioctets ;
— triple indirect : 1024x1024x1024x4Ki = 4 tébioctets.
Outre ces pointeurs qui permettent, à partir du i-nœud, de re-

trouver les blocs de données, le i-nœud contient aussi d’autres in-
formations capitales, qui sont les attributs du fichier :

— les droits d’accès au fichier ;
— l’identifiant numérique du propriétaire du fichier ;
— sa taille ;
— la date du dernier accès au fichier ;
— sa date de dernière modification ;
— et d’autres...
Le contenu d’un i-nœud peut être consulté par la commande

Unix ls.
Le grand avantage de la structure de la i-liste sur d’autres mé-

thodes de gestion, c’est qu’un i-nœud n’a besoin d’être chargé en
mémoire que si le fichier qu’il décrit est en cours d’utilisation. Une
table linéaire des blocs de disque devrait, a contrario, résider en
mémoire de façon permanente, et avec les disques actuels ce serait
vraiment encombrant.

Répertoires de fichiers

La i-liste permet de retrouver les fichiers sans ambiguïté par leur
numéro de i-nœud, dont l’unicité est garantie, mais ce n’est pas un
procédé réellement commode. Les êtres humains préfèrent souvent
désigner un fichier (ou un autre objet) par un nom propre qui leur
rappelle la nature des données, comme Photo_Tante_Léonie ou
fichier_clients_2013. Pour répondre à cette attente, la plupart
des systèmes d’exploitation proposent des répertoires (en anglais
directories), appelés parfois aussi dossiers (folders) ou catalogues.

De même qu’un répertoire téléphonique permet, pour une per-
sonne dont on connaît le nom, de retrouver son numéro de télé-
phone, un répertoire de fichiers permet pour un fichier de nom
connu de retrouver son numéro de i-nœud, qui lui-même permet-
tra d’accéder au fichier. Un répertoire n’est qu’un fichier un peu

3 Voir note 7 p. 104.
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particulier, dont le contenu est en fait une liste de fichiers, dont
certains peuvent d’ailleurs être eux-mêmes des répertoires, appelés
pour l’occasion sous-répertoires. Dans la liste figure, pour chaque
fichier, son nom et son numéro d’i-nœud, ce qui permet de retrouver
commodément le fichier par son nom.

La figure 5.4 donne le format des entrées de répertoire pour un
système de fichiers sous Unix (en l’occurrence ici ext2, ext3 ou
ext4 pour Linux). Les entrées sont de taille variable, ce qui offre
l’avantage de permettre des noms de fichiers longs sans pour autant
gaspiller trop d’espace disque 4.

numéro
d’i−noeud

numéro
d’i−noeud

numéro
d’i−noeud

fichier−1

un_fichier_avec_un_nom_assez_long

un−autre−fichier

9

16

33

4 4 2
déplacement  jusqu’à l’entrée suivante

20

44

27

longueur de ce nom

Figure 5.4 – Entrées de répertoire d’un système de fichiers Unix (format
classique)

Du point de vue de l’utilisateur, un système de fichiers se pré-
sente donc avec une structure d’arbre.

Un arbre est une structure de données définie de la façon (ré-
cursive) suivante :

— un arbre est soit l’arbre vide soit un nœud ;
— un nœud a des fils qui sont des arbres ;
— si tous les fils d’un nœud sont l’arbre vide on dit que ce

nœud est une feuille ;

4 L’examen des sources du noyau et la lecture des bons auteurs m’a révélé
la surprenante diversité des formats de répertoire parmi même différentes
versions d’une même variété d’Unix, Linux en l’occurrence. Je donne donc
ici un format générique, non pas une référence à utiliser les yeux fermés.
Je ne parle ici que des systèmes de fichiers « classiques », parce que les sys-
tèmes novateurs comme Reiserfs, XFS et JFS ont abandonné les répertoires
à structure de liste linéaire au profit de structures en arbre, à consultation
plus rapide.
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— outre des fils, chaque nœud comporte une valeur.
Un arbre peut en outre avoir une racine, qui est un nœud situé
en haut quand on le dessine, contrairement aux arbres des forêts.
Les nœuds qui ne sont pas des feuilles sont parfois appelés « nœuds
intérieurs ».

La racine de l’arbre « système de fichiers » est un répertoire tel
que tous les fichiers du système de fichiers considérés figurent soit
dans ce répertoire racine, soit dans un sous-répertoire du répertoire
racine. Les sous-répertoires sont les nœuds intérieurs, et les fichiers
ordinaires les feuilles de cet arbre.

vmlinuzvar etc

passwd hostsmartin

home

bloch

usrtmp

livre.tex

répertoire

fichier /

bin

mail date

brouillon.txt

photo1.jpg

racine (root)

Travaux

Figure 5.5 – Arborescence des répertoires et fichiers Unix

Les figures 5.5 et 5.6 représentent une partie d’un système de
fichiers Unix. Un système Unix comporte au moins un système de
fichiers, décrit par un répertoire appelé racine (root). Il comporte
traditionnellement les sous-répertoires suivants :

— etc contient les fichiers de configuration du système et des
principaux logiciels ;

— bin contient les programmes exécutables fondamentaux ;
— local contient les données et programmes généraux propres

au système local ;
— home contient les répertoires des utilisateurs ;
— et d’autres...
Ainsi, le fichier photo_Tante_Leonie.jpg qui appartient à l’utili-

sateur Marcel P., dont le nom d’utilisateur est marcel, sera ré-
pertorié dans le répertoire marcel, lui-même sous-répertoire de

photo_Tante_Leonie.jpg
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home, lui-même sous-répertoire de la racine, à laquelle on ne donne
pas de nom. Par convention, le caractère « / » sert à marquer les
échelons descendus dans l’arborescence du répertoire : ainsi le fi-
chier photo_Tante_Leonie.jpg a-t-il comme nom complet depuis la ra-
cine /home/marcel/photo_Tante_Leonie.jpg. Comme nous n’avons pas
donné de nom à la racine, tous les shells s’accordent à la nommer
par convention « / ». Le nom complet d’un fichier, qui comporte
les noms de tous les répertoires qu’il faut parcourir pour parvenir
à lui depuis la racine, est aussi nommé chemin (path).

Outre les sous-répertoires déjà indiqués, le répertoire racine ré-
pertorie aussi des fichiers ordinaires (par opposition aux répertoires)
tels que /vmunix, le fichier exécutable du noyau, que l’auteur de
Linux a baptisé quant à lui /vmlinuz.

Le terme de dossier employé parfois pour désigner les répertoires
ne me semble pas très heureux parce qu’il suggère un contenant
dans lequel seraient contenus les fichiers, ce qui n’est pas le cas.
Un répertoire n’a d’étendue que celle nécessaire à loger ses propres
informations sur les fichiers, mais pas les fichiers eux-mêmes, et
encore moins les i-nœuds. Il est vrai que la tentation de cette méta-
phore est omniprésente : lorsque l’on enregistre un répertoire dans
un autre répertoire, dont il devient de ce fait un sous-répertoire,
tous les fichiers qu’il répertorie apparaissent désormais comme des
feuilles de l’arbre de ce répertoire père. Comme, d’expérience com-
mune, la navigation dans une telle arborescence est difficile à faire
comprendre aux utilisateurs, l’espoir que la métaphore du dossier
rende la chose plus accessible était légitime, même si peu confirmé.

Création d’un système de fichiers

On choisit généralement de fractionner l’ensemble de cette ar-
borescence en plusieurs systèmes de fichiers, installés chacun dans
une partition du disque. Ainsi les fichiers des utilisateurs sont-ils
généralement répertoriés à partir d’un répertoire /home, qui ré-
pertoriera les répertoires personnels des utilisateurs, qui eux à leur
tour répertorieront les sous-répertoires et les fichiers personnels.
Il est considéré comme de bonne gestion de placer le répertoire
/home et tous ses sous-répertoires dans un système de fichiers à
part. Ainsi, notamment, lorsque l’on installera dans « / » une nou-
velle version du système d’exploitation en effaçant tout l’ancien
contenu, les fichiers des utilisateurs ne seront pas affectés. Pour
réaliser ceci à partir d’un ordinateur vierge de tout système, on va

photo_Tante_Leonie.jpg
/home/marcel/photo_Tante_Leonie.jpg
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/home    SF des utilisateurs

brouillon.txt  comme son nom...

bin              mes programmes
Images       mes photos
Mail            mon courrier
Projets        mes projets
.bashrc        mes préférences

Travaux     mes travaux...

la racine du système : /

...

/bin
/etc
/usr
/home

sarraute
mahfouz
kawabata
bloch

.../LivreProgrammation

introduction.tex
recursivite.tex
algorithmes.tex
...

.../LivreSystème

introduction.tex
processus.tex
memoire.tex
...

/home/bloch/Travaux

LivreProgrammation
LivreSysteme

/home/bloch/Mail

Amis
Editeurs
Programmation

/home/bloch/Images

tanteLeonie
voyageVenise
...

brouillon.txt
−−
Longtemps je me
suis couché de
bonne heure...

−−
.bashrc

PATH=...
export PATH
VISUAL=...

/home/kawabata

PaysdeNeige

...
GrondementMont

/home/kawabata

PaysdeNeige

...
GrondementMont

mon répertoire racine : /home/bloch/home/mahfouz

Impasse2Palais
...

−−
processus.tex

L’idée de 
réification du
processus...

−−
recursivite.tex

Une procédure
qui s’invoque
elle−même...

−−
memoire.tex

La mémoire, terme
d’un anthropomorphisme
quelque peu abusif...

Figure 5.6 – Répertoires et fichiers

partir par exemple d’un CD-ROM ou d’une clé USB qui contiendra
d’une part les éléments du futur système d’exploitation à instal-
ler sur disque dur, d’autre part une version rudimentaire du sys-
tème pour pouvoir réaliser ce travail. Les distributions récentes du
système GNU/Linux automatisent cette procédure, notamment au
moyen du logiciel de partition gparted, ce qui fait que la plupart
du temps l’utilisateur n’aura pas à faire tout cela « à la main », mais
lorsque l’on utilise un système automatique il est bon de savoir ce
qu’il fait à votre insu.

— On crée avec un programme utilitaire spécial (par exemple
fdisk 5) sur le ou les disques dont on dispose des partitions
dont le nombre et la taille sont choisis après lecture de la do-

5 fdisk est un programme de bas niveau, que gparted invoque en dissimulant
les détails ci-dessous à l’utilisateur.
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cumentation du système et selon les projets que l’on forme
quant à l’utilisation de l’ordinateur. La création d’une par-
tition installe sur le disque un certain nombre de structures
de données. Nous prendrons l’exemple d’un disque configuré
pour le système de fichiers ext4 sous Linux sur un ordina-
teur de type PC, avec un BIOS traditionnel et de ce fait
une table de partitions limitée à quatre partitions installée
dans le premier secteur du disque, nommé Master Boot Re-
cord (MBR). Nous reviendrons sur ce sujet au chapitre 12 p.
392, où nous décrirons les systèmes plus récents, où le BIOS
est remplacé par UEFI (Unified Extensible Firmware Inter-
face) et la table du MBR par la GPT, pour GUID Partition
Table (Globally Unique IDentifier Partition Table), qui au-
torise 128 partitions sur un même disque, avec une capacité
possible de 9,4 ZB (9, 4× 1021 octets).
— le MBR, donc, contient la table des partitions du disque,

repérées par les numéros de leurs secteurs de début et
de fin ; une ou plusieurs de ces partitions peuvent être
bootables, c’est-à-dire contenir un système d’exploitation
susceptible d’être chargé en mémoire ; le MBR contient
aussi un petit programme qui permet à l’utilisateur de
choisir au démarrage la partition de boot (d’amorçage) ;
ce petit programme était naguère LILO, il est aujour-
d’hui plus souvent GRUB ;

— chaque partition a pour premier bloc un bloc d’amorçage,
afin de pouvoir être bootable ;

— le reste de la partition est divisé en groupes de blocs ;
tous les groupes de blocs ont la même longueur et la
même structure ; ils contiennent chacun une copie de la
structure de données appelée « super-bloc » et une co-
pie des descripteurs de groupes de blocs, qui décrivent
la structure de la partition et notamment de la i-liste ;
ces copies redondantes permettent de reconstituer la co-
hérence du système de fichiers contenu par la partition
après un dommage physique provoqué, par exemple, par
une coupure de courant intempestive ; le programme de
réparation de système de fichiers sous Unix est fsck, ho-
mologue de SOS Disk bien connu des vieux utilisateurs
de Macintosh ;

— fdisk crée aussi la i-liste, destinée à décrire le contenu
de la partition.
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— On affectera une partition à la racine du système « / » et
une autre partition à /home ; les partitions peuvent indiffé-
remment être sur le même disque ou sur des disques dif-
férents ; il pourra en outre y avoir d’autres partitions dont
nous ne parlerons pas ici, destinées à d’autres systèmes de
fichiers tels que /usr, /local, /tmp, /var... En revanche /bin
et /etc restent dans la partition racine parce qu’ils sont in-
dispensables au démarrage du système, y compris pendant
la phase où il n’a pas encore accès aux systèmes de fichiers
« subordonnés ».

— On construit dans chacune de ces partitions un système de
fichiers vide avec un programme utilitaire (en général mkfs) ;
la création d’un système de fichiers comporte notamment la
création de son répertoire racine, qui est une racine « rela-
tive » par rapport à la racine « absolue », « / ».

— On crée dans « / » un répertoire vide nommé home. Ce réper-
toire vide sera le point par lequel à partir de « / » on accèdera
au système de fichiers home, il est appelé point de montage
du système de fichiers home. Cette opération de montage est
décrite à l’alinéa suivant.

— La procédure de construction du nouveau système d’exploi-
tation va comporter la création d’une table des systèmes de
fichiers, le fichier /etc/fstab, qui indiquera que le répertoire
à la racine du système de fichiers réservé pour les fichiers
des utilisateurs sera raccordé à « / » au point /home : cette
opération de raccordement s’appelle le montage d’un sys-
tème de fichiers. On observera que les notions de système
de fichiers et de répertoire sont distinctes bien qu’elles in-
teragissent sans cesse. Le système de fichiers est un objet
physique, installé sur une partition. La i-liste décrit physi-
quement les fichiers situés dans la partition considérée. Le
répertoire est une structure logique qui sert à en décrire le
contenu du point de vue de l’utilisateur.

Sous Linux, l’ensemble des opération décrites ci-dessus (parti-
tionnement du disque, création des systèmes de fichiers, montage
des partitions par rapport à la racine du système) peut être facilité
et en partie automatisé par le logiciel parted ou, plus facile encore,
par sa version avec interface graphique gparted, qui est d’ailleurs
généralement invoqué par la procédure d’installation du système.
Il restera toujours de la responsabilité de l’utilisateur de choisir sur
combien de partitions répartir son système. Tout mettre dans un
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seule grande partition (comme le suggère la procédure d’installa-
tion de Windows) est une mauvaise idée, parce que s’il faut un jour
réinstaller le système, ce qui arrive quand même de temps en temps,
il faudra réinstaller aussi les données, à condition d’avoir une copie
de sauvegarde à jour. Si on a pris soin d’avoir un home distinct de
la racine, les données des utilisateurs seront préservées.

5.2.2 Traitement de fichier
Nous avons vu qu’un fichier était une suite de caractères, sto-

ckés dans un certain nombre de blocs sur disque ; un i-nœud permet
de repérer ces blocs et de les identifier comme parties du fichier ;
une entrée de répertoire permet d’associer à ce i-nœud un nom
ainsi qu’un chemin d’accès depuis le répertoire racine du système
« / ». Par exemple, si je veux conserver des collections de séquences
d’ADN, je pourrai donner à mes fichiers des noms qui évoquent l’or-
ganisme dont proviennent les séquences qu’il contient : listeria.
monocytogenes, arabidopsis.thaliana, xenopus.laevis. Ces noms ne
sont-ils pas jolis ? Ils désignent respectivement la bactérie de la
listériose, une petite plante commune mais élégante, une grenouille
africaine.

Le programmeur qui écrit un programme pour lire ou écrire
dans le fichier, de son côté, associe un nom symbolique au flux de
caractères en entrée ou en sortie, par exemple sequence.entree pour
le flux de caractères associé à la lecture d’une séquence à traiter.

On peut se représenter le fichier comme une file de caractères,
lors de son ouverture un curseur est placé sur le premier caractère,
chaque ordre de lecture renvoie le caractère placé sous le curseur et
déplace le curseur jusqu’au caractère suivant.

Ouverture de fichier

Comment établir le lien entre un fichier physique, nommé
par exemple arabidopsis.thaliana, et le nom symbolique d’un flux
dans un programme, par exemple sequence.entree ? Cette connexion
s’appelle assez universellement l’ouverture (open) du fichier. Elle
consiste à construire en mémoire une structure de données qui
contiendra toutes les informations relatives à l’une et l’autre entité,
fichier et flux, ce qui permettra la réalisation effective des entrées-
sorties. C’est vite dit, mais l’opération d’ouverture de fichier est
assez complexe du fait du grand nombre de types de périphériques
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et de types de fichiers possibles, ainsi que de la grande variété de
méthodes de traitement qui s’y appliquent. Sous Unix, une fois la
structure de données construite, elle est ajoutée à une collection de
ses semblables, la liste des fichiers ouverts pour le processus cou-
rant, liste dans laquelle son numéro d’ordre est appelé descripteur
de fichiers.

Le fait de désigner le flux par un nom symbolique qui ne sera
associé au fichier physique que lors de l’ouverture permet d’utiliser
le même programme pour traiter les fichiers listeria.monocytogenes,
arabidopsis.thaliana, xenopus.laevis et bien d’autres.

Une fois le fichier ouvert, il est possible d’exécuter des opérations
de lecture ou d’écriture dans le flux correspondant, comme nous
l’avons décrit aux sections 3.11.1 et 3.11.2.

5.2.3 Fichiers, programmes, mémoire virtuelle
Parmi les fichiers il en est qui jouent un rôle un peu particulier :

ceux qui contiennent des programmes exécutables sous forme bi-
naire. En fait ce sont des fichiers comme les autres, simplement au
lieu d’être créés et lus par des programmes ordinaires, ils sont créés
par des compilateurs 6, qui sont en fait des programmes comme les
autres, et lus par le système d’exploitation lors du lancement du
programme correspondant (voir le chapitre 2, et notamment la sec-
tion 2.7, ainsi que la section 3.10). Plus précisément, nous avons
vu que c’était l’appel système execve qui devait charger le pro-
gramme en mémoire et lui fournir des pointeurs sur les éléments de
l’environnement établi pour le processus dans le contexte duquel il
allait devoir s’exécuter.

Lorsque la mémoire virtuelle a été introduite, par exemple dans
les systèmes IBM 370, un programme dont l’exécution démarrait
était chargé depuis le fichier où il résidait vers la mémoire virtuelle ;
par la suite les pages affectées à ce programme étaient éventuelle-
ment évacuées de la mémoire réelle vers la mémoire auxiliaire de
pagination. Il y avait là quelque chose d’illogique, qui a été résolu
dans les systèmes modernes : le fichier qui correspond au programme
possède un format adapté à la pagination, et lorsque le programme
est chargé en mémoire virtuelle ce fichier d’origine sert de fichier de
pagination aux pages qui lui sont allouées.

6 et des programmes cousins appelés éditeurs de liens, destinés à réunir plu-
sieurs programmes simples pour en construire un plus complexe.
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5.2.4 Cache de disque
De même que le cache mémoire permet de garder près du pro-

cesseur les mots de mémoire les plus probablement utilisés dans les
instants qui suivent, le système réserve une partie de la mémoire
pour y conserver les blocs disque les plus probablement utilisés.
Ceci vient s’ajouter au fait que les disques modernes sont dotés de
contrôleurs qui comportent également de la mémoire vive qui sert
de cache.

Avec un système Unix, la taille du cache de disque s’ajuste dy-
namiquement à la taille de la zone mémoire disponible. Il n’est pas
rare que le cache de disque occupe la moitié de la mémoire réelle à
un instant donné. La stratégie est toujours la même : essayer d’avoir
en mémoire la page de fichier ou le bloc de disque qui a une forte
probabilité d’être bientôt lu ou écrit. Il faut donc trouver de bons
prédicteurs des lectures ou écritures prochaines, et cela selon les
types d’accès.

Pour le fonctionnement en lecture, le principe « ce qui vient
d’être lu sera lu » peut être appliqué. Mais comme souvent les fi-
chiers sont lus séquentiellement, il peut aussi être de bonne poli-
tique de charger en mémoire cache (de disque) les blocs de fichier
qui suivent celui qui vient d’être lu.

Pour le fonctionnement en écriture, la question est : à quel mo-
ment les données contenues dans le cache vont-elles être écrites
réellement sur le disque ? Deux politiques sont possibles : lancer si-
multanément l’écriture dans la mémoire de cache et sur le disque
(write-through), ou attendre un moment opportun ultérieur pour re-
copier le contenu du cache sur le disque (write-back), par exemple
lorsque le volume de données à écrire sera jugé optimum, ou lorsque
le bus sera libre. La seconde méthode donne de meilleures perfor-
mances, mais le laps de temps durant lequel les données ne sont
qu’en mémoire volatile donne des frissons dans le dos des âmes
pusillanimes.

Pour expliquer la différence entre les deux politiques de ges-
tion de cache, risquons une comparaison. Je reçois chaque jour une
masse de courrier qui s’empile sur mon bureau : ce sont des résul-
tats d’opérations d’entrée-sortie. La plupart de ces courriers ne me
concernent pas directement, mais je dois les conserver dans mes
dossiers, pour un éventuel usage futur. J’ai le choix entre deux mé-
thodes :
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— chaque jour, ouvrir le courrier, repérer pour chaque message
de quoi il s’agit afin de déterminer le dossier qui l’accueillera
dans mes placards, et ranger chaque document à sa place
ainsi choisie : c’est la méthode write-through ;

— laisser pendant des mois le courrier non ouvert s’empiler sur
mon bureau ; quand l’invasion rend la situation intenable,
trois ou quatre fois par an, ranger : c’est la méthode write-
back.

Il va sans dire que j’ai recours à la seconde méthode, write-back,
bien plus efficace : ainsi quand j’ouvre le courrier, une proportion
importante des lettres, notes et autres convocations concerne des
événements révolus depuis longtemps, et peut donc aller directe-
ment à la corbeille à papiers, sans passer par l’étape fastidieuse et
coûteuse du rangement en dossiers. Les adeptes du write-through
sont condamnés à devenir de purs bureaucrates à force de prendre
au sérieux des messages dont l’expérience prouve que les ignorer pu-
rement et simplement ne cause aucun dommage. Et, a priori, j’au-
rai choisi comme date de rangement un jour tranquille où d’autres
obligations plus urgentes ne seront pas différées à cause de cette
activité subalterne.

Le rôle de la mémoire persistante est tenu par les dossiers dans
les placards ; le plateau de mon bureau joue le rôle de cache. Un long
entrainement me permet de savoir assez bien ce que contiennent les
piles apparemment anarchiques qui encombrent mon bureau, et je
suis capable d’accéder assez vite à un document si le besoin s’en
fait sentir, en tout cas beaucoup plus vite que si je dois fouiller
dans mes beaux dossiers bien rangés mais dont j’ai oublié depuis
longtemps ce que j’y ai mis.

5.3 Systèmes de fichiers en réseau : NFS, SANs
et NAS

Pour un centre de calcul d’une certaine importance, il y a trois
modèles de solutions possibles pour stocker les bases de données :

1. disques connectés directement aux serveurs par des attache-
ments IDE, SATA, SCSI (Small Computer Systems Inter-
face), SAS, etc. (ou NVMe (Non-Volatile Memory express)
pour les disques SSD) ;

2. disques organisés selon la technologie SAN (Storage Area Net-
work) ;
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3. disques organisés selon la technologie NAS (Network Attached
Storage).

Nous allons examiner successivement ces trois solutions. Pour
en savoir plus sur SCSI, SAN et NAS on consultera avec profit le
livre de W. Curtis Preston[103].

5.3.1 Disques connectés directement aux serveurs
Cette solution est identique à celle qui existe pour les ordina-

teurs personnels de bureau. Il existe deux techniques de connexion :
IDE et SCSI. IDE est limité à quatre disques, y compris d’éventuels
lecteurs ou graveurs de CD-ROM, ce qui ne convient manifestement
pas aux configurations envisagées ici, aussi nous limiterons-nous
aux interfaces SCSI, non sans avoir signalé quand même qu’IDE a
connu des évolutions (ATA comme AT Attachment et SATA comme
Serial ATA) qui pourraient un jour en faire des concurrents sérieux
de SCSI. Il existe déjà des armoires de disques SATA pour faire des
NAS de second niveau bon marché.

La connexion d’un disque SCSI à un ordinateur suppose l’ins-
tallation dans le fond de panier de l’ordinateur d’une carte contrô-
leur SCSI qui comporte l’interface adéquate, appelée bus. Il faudra
aussi configurer le système d’exploitation pour y inclure les pilotes
SCSI adéquats. À un bus SCSI on pourra raccorder, selon les ver-
sions, huit ou seize appareils SCSI, disques ou autres (le contrôleur
compte pour un), qui seront connectés en chaîne les uns derrière
les autres. Retenons que toute raccordement d’une chaîne SCSI à
un ordinateur nécessite une intervention avec ouverture du boîtier
de la machine. Il s’agit d’une connexion de bas niveau, étroitement
couplée à un ordinateur donné.

5.3.2 Systèmes de fichiers en réseau
Lorsque plusieurs ordinateurs cohabitent sur le même réseau

local il est tentant de leur permettre de partager des fichiers. Cette
tentation a donné naissance aux systèmes de fichiers en réseau,
dont les principaux représentants sont NFS (Network File System)
pour les systèmes Unix, SMB (Server Message Block), aussi appelé
CIFS (Common Internet File System), pour les systèmes Windows.
Citons également le système AppleShare pour les ordinateurs Apple.

Le principe de ces systèmes est toujours le même : le système
de fichiers distant est présenté à l’utilisateur comme s’il était local,
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Figure 5.7 – Chaîne de trois disques SCSI connectée à un ordinateur

et celui-ci émet des appels système habituels pour y effectuer des
opérations d’entrée-sortie. Le noyau du système intercepte ces ap-
pels système et les encapsule dans un message qui va être envoyé au
système distant. Le message contient la description de l’opération
d’entrée-sortie à effectuer. Il s’agit donc d’un appel de procédure
à distance, ou Remote Procedure Call, RPC en abrégé. Le résultat
de l’opération est retourné à l’expéditeur par le même procédé.

On conçevra aisément que ce processus, qui consiste à comman-
der l’exécution d’un programme sur un autre ordinateur, est une
faille béante de sécurité. Il est donc recommandé de limiter l’usage
des systèmes de fichier en réseau à des environnements soigneu-
sement contrôlés. Ces systèmes sont généralement des protocoles
sans état, ce qui fait qu’ils ne comportent pas de système de ve-
rouillage pour garantir la cohérence des fichiers distants (voir à ce
sujet la section 6.6.2). Il est souvent prudent de permettre l’accès à
des systèmes de fichiers distants soit à plusieurs utilisateurs, mais
uniquement en lecture, soit en lecture et en écriture, mais à un seul
utilisateur.

Pour partager des données réparties de façon plus complexe
sans encourir les risques que nous venons d’évoquer, il convient
d’utiliser pour gérer les données accessibles par le réseau un Système
de Gestion de Bases de Données, qui comportera alors les dispositifs
désirables de contrôle d’accès.



Systèmes de fichiers en réseau : NFS, SANs et NAS 143

5.3.3 Architecture SAN
L’architecture SAN est fondamentalement une extension de la

technologie SCSI, dont elle reprend les principes tout en en amélio-
rant la réalisation sur les points suivants :

1. le protocole SCSI a été étendu pour donner deux protocoles
plus puissants, Fibre Channel et iSCSI, qui permettent des
débits et des longueurs de câbles supérieurs ;

2. le maximum théorique d’appareils que l’on peu connecter à
un SAN en Fibre Channel est de 16 millions ;

3. plusieurs ordinateurs connectés à un même SAN peuvent ac-
céder concurrement à tous les disques du SAN.

On voit bien le progrès que la technologie SAN apporte en ex-
tension et en souplesse de configuration pour de vastes ensembles
de serveurs et de support de stockage.

La figure 5.8 montre la topologie d’un SAN de type fabric en
Fibre Channel ; il y a deux types de topologies possibles : fabric et
arbitrated loop ; la seconde était justifiée par le prix prohibitif des
commutateurs de type fabric, mais comme ceux-ci sont devenus plus
abordables, la topologie arbitrated loop, moins efficace, ne se justifie
plus vraiment et je ne la décrirai pas ici. Lorsque le protocole iSCSI
sera sorti de son état actuel de quasi-prototype, il sera possible de
construire des SANs à base de commutateurs Ethernet Gigabit,
beaucoup plus économiques. En effet, un commutateur 16 ports
Fibre Channel de marque Brocade coûte de l’ordre de 20 000 Euros,
contre 6 000 Euros pour un commutateur Gigabit Ethernet chez
Cisco.

Les serveurs comportent des HBA (Host Bus Adapters), qui ne
sont pas autre chose que des contrôleurs SCSI adaptés au support
Fibre Channel.

Contrairement à ce que pourrait suggérer la figure, le commu-
tateur n’affranchit pas les serveurs de la gestion de bas niveau du
protocole Fibre Channel (c’est-à-dire en fait SCSI), ils doivent no-
tamment être dotés du matériel et des pilotes adéquats. Le com-
mutateur ne fait qu’aiguiller des flots d’octets vers la bonne desti-
nation.

Comme les données sur les disques sont traitées au niveau phy-
sique, cela veut dire que les serveurs doivent être dotés de logiciels
absolument compatibles, il n’y a aucune abstraction des données.
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Figure 5.8 – Topologie d’un SAN en Fibre Channel

5.3.4 Architecture NAS
Comme l’indiquent les noms des protocoles d’accès aux données

généralement proposés, un NAS (Network Attached Storage) est un
serveur de fichiers (le terme est important) connecté au réseau.
Les autres serveurs peuvent accéder au fichiers servis par le NAS
au moyen des protocoles de partage de fichiers habituels : NFS (Net-
work File System) pour les systèmes Unix, SMB (Server Message
Block), aussi appelé CIFS (Common Internet File System), pour
les systèmes Windows.

La figure 5.9 représente l’architecture d’un NAS. L’objet appelé
« tête du NAS » est en fait un ordinateur équipé d’un système d’ex-
ploitation spécialisé qui ne fait que du service de fichiers. En général
c’est un système Unix dépouillé de toutes les fonctions inutiles pour
le système de fichiers, et spécialement optimisé pour ne faire que
cela. Le plus souvent, la façon dont le NAS effectue la gestion de
bas niveau de ses disques est... un SAN en Fibre Channel.

Quelle est la différence entre un NAS et un serveur de fichiers or-
dinaire ? Fonctionnellement, on pourrait répondre : aucune. En fait,
tout est dans le système d’exploitation spécialisé. Les protocoles de
partage de fichiers mis en œuvre sur des systèmes ordinaires ont la
réputation de performances médiocres et de robustesse probléma-
tique. Les NAS de fournisseurs sérieux ont résolu ces difficultés et
offrent des performances excellentes.
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Figure 5.9 – Topologie d’un NAS

Quel est l’avantage du NAS par rapport au SAN? Les serveurs
de calcul sont totalement découplés des serveurs de données, il n’est
plus nécessaire de les équiper du matériel et des pilotes nécessaires à
l’accès physique aux disques, une carte Ethernet Gigabit (quelques
dizaines d’Euros) et la pile TCP/IP standard font l’affaire et on ne
s’occupe plus de rien. Il est prudent de prévoir un réseau réservé à
l’usage du NAS et de ses clients.

Quelles sont les limites de l’architecture NAS ? C’est du service
de fichiers, donc les accès de bas niveau ne sont pas disponibles
(c’est d’ailleurs le but). Dans l’antiquité, les SGBD utilisaient sou-
vent un mode d’accès aux disques qui court-cicuitait le système
de fichiers (raw device), pour des raisons de performances. Aujour-
d’hui l’amélioration des caractéristiques du matériel a fait que cette
approche n’est plus guère utilisée. Les bases de données Oracle de
l’Inserm sont installées en mode « système de fichiers ». Les base
de données Oracle chez Oracle, Inc. sont installées sur des NAS de
la maison Network Appliance.

Quels sont les autres services disponibles avec un NAS ?
— mirroring de systèmes de fichiers à distance, par exemple

duplication des données sur un site distant ;
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— gestion du cycle de vie des données : on peut prévoir un
stockage de second niveau pour les données inactives mais
qu’il faut garder, sur des disques plus lents et moins chers ;

— sauvegarde des données autonome, sans intervention des ser-
veurs de calcul : la tête de NAS est un ordinateur, capable
de piloter une sauvegarde selon le protocole NDMP (Net-
work Data Management Protocol) supporté par le logiciel
de sauvegarde Time Navigator utilisé par l’Inserm.

Dernier avantage : les solutions NAS sont moins onéreuses que
les solutions SAN, parce qu’au lieu de mettre de la quincaillerie
partout, le matériel destiné au stockage de données est concentré
dans une seule armoire (un seul rack pour les NAS moyens, un
boîtier pour les petits, à usage personnel).

5.4 Critique des fichiers ; systèmes persistants
Si nous nous remémorons la description du système de mémoire

virtuelle donnée au chapitre 4 et que nous la comparions à la des-
cription du système de fichiers qui vient d’être donnée, nous ne pou-
vons manquer d’être frappés par leur redondance mutuelle. L’un et
l’autre systèmes ont pour fonction d’assurer la persistance de don-
nées qui étaient dans la mémoire centrale pour y subir un traite-
ment, qui cessent d’y résider pour une raison ou une autre, et que
l’on souhaite néanmoins conserver pour un usage ultérieur. La dif-
férence entre les deux réside finalement dans les circonstances qui
dans l’un et l’autre cas amènent les données à cesser de résider en
mémoire, et c’est cette différence qui est à l’origine de réalisations
techniques dont la ressemblance ne saute pas aux yeux. Mais au
fond, la mémoire virtuelle et le système de fichiers font la même
chose, avec des différences d’interface plus que de fonctionnement,
et l’on peut dire que si la mémoire virtuelle était venue plus tôt les
fichiers n’auraient sans doute pas vu le jour.

D’ailleurs, des précurseurs ont choisi de s’en passer. Dans Mul-
tics, déjà évoqué à la section 3.10.1 p. 61, la mémoire virtuelle
est découpée en segments de taille variable. C’est une structure de
mémoire virtuelle plus complexe que celle que nous avons décrite,
mais elle remplit les mêmes fonctions. Eh bien, pour Multics on
dit simplement que certains segments sont persistants et résident
de façon permanente sur disque. C’est un attribut d’un segment : la
persistance ! Et pour savoir quels segments sont présents à tel ou tel
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emplacement de la mémoire persistante, on utilise une commande
de liste des segments, en abrégé ls, que les Unixiens reconnaîtront.

Nous avons déjà mentionné le système Pick et celui de l’IBM
AS400, construits autour d’une base de données. Le choix est sur-
tout clair avec Pick : chaque donnée individuelle porte un nom uti-
lisable dans l’ensemble du système, et ce système de nommage est
unifié. Par exemple, si le système est utilisé pour une application de
paie dans un organisme public, il y a une variable et une seule pour
donner la valeur du point d’indice des fonctionnaires. Cette variable
a un propriétaire (sans doute le Secrétaire d’État à la Fonction Pu-
blique), qui dispose seul du droit d’en modifier la valeur. Tous les
programmes qui doivent connaître cette valeur peuvent y accéder.
Lors de la parution au Journal Officiel d’une modification de la va-
leur du point d’indice, une seule opération garantit la justesse de
tous les calculs.

Incidemment, cette architecture de données procure aux utili-
sateurs profanes (et aux autres !) une vision considérablement sim-
plifiée de l’ensemble du processus de traitement et de stockage de
l’information. Une grande partie de la complexité de ces choses pour
le néophyte tient à la difficulté d’avoir une vision d’ensemble d’un
système qui réunit et coordonne des objets qui à l’état actif sont en
mémoire et qui au repos sont dispersés dans une foule de fichiers
aux statuts variés. Avoir un concept unique de mémoire pour tous
les objets, persistants ou non, et une désignation unique pour tout
objet quels que soient son état et son activité, ce sont des amélio-
rations intellectuelles considérables. Le corporatisme informatique
en a eu raison, provisoirement souhaitons-le.

La recherche sur les systèmes persistants continue, même si
elle reste assez confidentielle. L’augmentation des performances des
processeurs et des mémoire devrait l’encourager en abolissant les
obstacles de cet ordre qui ont eu raison des précurseurs.

Le principe de persistance orthogonale est apparu à la fin des
années 1970, dans le domaine des langages de programmation. Il
proclame que toute donnée doit être habilitée à persister pendant
un délai aussi long qu’il est utile, et que la méthode d’accès à une
donnée doit être indépendante de la nature de sa persistance. Dans
les systèmes classiques il en va tout autrement : les données volatiles
en mémoire centrale sont invoquées par leur nom, les données per-
sistantes sur mémoire externe sont accueillies en mémoire centrale
comme le résultat de l’invocation d’une commande d’entrée-sortie.
Un système persistant reléguera ces différences techniques dans les
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couches basses du système et présentera une interface uniforme
d’accès aux données.

Les tentatives pour implanter la persistance orthogonale dans
les langages ou les bases de données utilisées dans le contexte de
systèmes d’exploitation classique comme Unix n’ont pas donné de
très bons résultats, parce que le problème de l’accès aux données
est trop fondamental pour être résolu de façon totalement différente
par un programme d’application d’une part, par son environnement
d’autre part. L’auteur de système persistant est amené à gérer la
mémoire de manière parfois subtile et complexe, or dans un système
classique tel Unix c’est le noyau qui décide des pages de mémoire
virtuelle à garder en mémoire volatile ou à reléguer en mémoire
auxiliaire, ce qui aboutit à des contradictions.

L’exemple d’un tel échec est fourni par les bases de données à
objets qui avaient soulevé un grand intérêt dans les années 1990
avec leur programme très séduisant, qui consistait à stocker les
données sous la même forme en mémoire centrale pendant leur vie
« active » et en mémoire auxiliaire pendant leur vie « latente ». Le
revers de la médaille était que le format des données dans les bases
dépendait alors du langage de programmation et du matériel uti-
lisés : une base de données créée par un programme C++ n’était
pas accessible à un programme Java, et si elle avait été créée sur
une machine Sun à processeur 32 bits elle n’était pas accessible
à un programme exécuté par une machine à processeur Alpha 64
bits, sauf à passer par des programmes de conversion de données
qui font perdre tout l’avantage attendu. De surcroît la mémoire
persistante était réalisée à base de systèmes de fichiers classiques,
totalement inadaptés à une telle fonction. Et enfin il résultait de
tout ceci une programmation laborieuse et des performances le plus
souvent médiocres. Si je puis mentionner mes modestes expériences
personnelles de combat avec un Système de Gestion de Données
Objet (SGDO) pourtant réputé très industriel (par opposition aux
logiciels libres développés par des chercheurs dans les universités),
je ne puis me déprendre d’une impression de bricolage : la trace du
système révélait que le SGDO passait le plus clair de son temps à
balayer en long, en large et en travers des arborescences de réper-
toire pour y chercher des données qui étaient tout à fait ailleurs, et
à recopier un nombre incalculable de fois la même (grande) portion
de fichier en mémoire (au moyen de l’appel système mmap pour les
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connaisseurs 7). Il n’y avait bien sûr pour un utilisateur naïf aucun
moyen simple d’extraire des données de la base : la seule façon était
d’écrire du code C++ bare metal, exercice particulièrement punitif
ou pervers. Alors que même si l’on peut reprocher aux Systèmes
de Gestion de Bases de Données Relationnelles (SGBDR) tels que
PostgreSQL, Oracle ou Sybase une certaine rigidité, ils offrent au
moins une méthode d’accès aux données relativement normalisée et
relativement simple avec le langage SQL.

La leçon à en tirer semble être qu’il vaut mieux implanter les
fonctions de persistance au niveau du système d’exploitation, quitte
à ce que ce soit une couche d’interface ajoutée à un système clas-
sique sous-jacent. L’implantation de la persistance dans le système
garantit une uniformité de vision pour tous les programmes d’appli-
cation, évite la redondance de fonctions qui alourdissait tellement
les bases de données à objets, bref elle assure la cohérence de la
sémantique d’accès aux données. C’était ce que faisait à sa façon
Pick, et que fait encore en 2018 le System i d’IBM (précédemment
AS400).

Les principaux projets de recherche en persistance au début de
ce millénaire sont les suivants :

— Le projet MONADS a démarré en 1976 à l’Université Mo-
nash (Australie). L’abstraction de base est le segment, à la
Multics : persistance à gros grain.

— Clouds vient du Georgia Institute of Technology (1988). Les
abstractions sont l’objet et l’activité (thread). Repose sur le
micro-noyau Ra.

— Eumel et ses successeurs L3 et L4 ont leur origine en
1977 à l’Université de Bielefeld, puis au GMD (Gesellschaft
für Mathematik und Datenverarbeitung, équivalent allemand
d’Inria), et sont principalement l’œuvre du regretté Jochen
Liedtke. Eumel fut le premier système à persistance orthogo-
nale. Il s’agit aussi d’un système à micro-noyau (voir chapitre
10).

— Grasshoper est un système à persistance orthogonale dé-
veloppé à l’Université de Saint Andrews, Écosse. Les enti-

7 mmap est un appel système qui réalise la projection d’un fichier en mémoire,
c’est-à-dire son chargement intégral, ce qui permet ensuite d’y accéder au
prix d’un accès en mémoire. C’est judicieux si l’on doit effectuer de façon
intensive des accès à tout le fichier, mais si l’on veut simplement accéder à
une donnée c’est un marteau-pilon pour écraser une mouche.
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tés persistantes sont des containers, des loci et des capabili-
ties. Dans les systèmes classiques la notion d’espace–adresse
est inextricablement mêlée à celle de processus. Les contai-
ners et les loci sont des entités analogues mais mieux distin-
guées (pardon : orthogonales), qui ont vocation à persister.
Le noyau du système lui-même est persistant (il y a quand
même toujours une partie non persistante, ne serait-ce que
pour le boot).

— Charm est le successeur de Grasshoper. Le noyau de Charm
n’exporte aucune abstraction pour le support de la persis-
tance, mais uniquement des domaines de protection capable
de communiquer avec le noyau.
Charm appartient à une nouvelle tendance parmi les sys-
tèmes d’exploitation : au lieu de cacher le matériel derrière
des abstractions, il l’expose afin que les stratégies de gestion
des ressources soient implémentées en « mode utilisateur ».
Cela suppose des dispositions favorables de l’architecture
matérielle.
Le motif est de séparer :
— les règles de gestion des ressources de bas niveau ;
— des mécanismes qui les implémentent.
L’auteur du système de haut niveau est libre d’implémenter
règles et mécanismes par une bibliothèque.

Incidemment, on peut signaler qu’il a existé un système d’ex-
ploitation universellement répandu et qui possèdait beaucoup de
caractéristiques « persistantes » : PalmOS, qui anime les ordina-
teurs de poche PalmPilot et Handspring Visor. Chaque programme
restait en mémoire dans l’état où l’utilisateur l’abandonnait, et où
il pouvait le retrouver lorsqu’il rallumait l’engin. Il n’y avait pas
de vrai système de fichiers. C’était assez surprenant quand on était
habitué aux ordinateurs classiques.

5.4.1 Reprise sur point de contrôle
La notion de reprise sur point de contrôle (checkpoint-restart)

est bien sûr au cœur de tous ces systèmes. Le problème à résoudre
est le suivant : si un programme est interrompu inopinément en
cours de traitement, comment reprendre son exécution sans avoir à
la recommencer depuis le début ? Idéalement, il faudrait reprendre
au point où l’on s’était arrêté, mais il est raisonnablement accep-
table de repartir d’un point en amont pas trop éloigné. La difficulté
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principale réside bien sûr dans la restauration de ce que nous avons
appelé le vecteur d’état du programme : valeur des variables, et
contenu des fichiers.

Ce problème n’est pas propre aux systèmes persistants, et il a
déjà été abordé et résolu. Dès les années 60 l’OS 360 offrait une
possibilité de checkpoint-restart pour les programmes utilisateur.
Cette possibilité consistait à enregistrer périodiquement sur disque
une copie de la mémoire et un relevé de l’état des fichiers ouverts.
En cas d’incident le programme repartait automatiquement du der-
nier point de contrôle. Ce mécanisme entraînait une consommation
d’espace disque considérable pour l’époque et surtout une orga-
nisation rigoureuse du lancement et de l’exécution des chaînes de
programmes, ce qui en restreignait l’usage.

Aujourd’hui une fonction analogue existe pour les ordinateurs
portables : une combinaison de touches de commande permet de
sauvegarder le contenu de la mémoire sur disque et de mettre l’or-
dinateur en veille, puis de le réactiver plus tard, ce qui permet par
exemple de changer de batterie sans passer par la procédure d’arrêt
du système et de redémarrage, elle-même grosse consommatrice de
temps et d’électricité.

Les SGBD convenables offrent la possibilité de déclarer des
transactions, c’est-à-dire de déclarer un ensemble d’opérations,
par exemple une mise à jour complexe de la base, comme une
méta-opération atomique. Conformément à l’étymologie une méta-
opération atomique est insécable : soit toutes les opérations de la
transaction sont accomplies correctement, soit elles sont toutes an-
nulées. Ceci est destiné à éviter de laisser la base dans un état
incohérent, voire inconnu. Les transactions sont généralement as-
sociées à un dispositif de roll in-roll out qui permet d’entériner
une transaction (roll in) ou de ramener la base de données à l’état
antérieur à la transaction (roll out).

Depuis les années 1980 sont apparus sur les systèmes en produc-
tion, issus de la recherche, les systèmes de fichiers journalisés tels
Andrew File System de l’Université Carnegie-Mellon, ADVFS dé-
rivé du précédent dans les laboratoires Digital Equipment (DEC),
JFS développé par IBM, XFS réalisé par Silicon Graphics (SGI),
et plus récemment sous Linux Ext3fs et Reiserfs. Le principe de la
journalisation est le suivant : avant toute opération de modification
du système de fichiers par une opération d’entrée-sortie, on enre-
gistre dans un fichier spécial (journal, en anglais log) la description
de l’opération, et après l’opération on enregistre qu’elle s’est bien
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passée. Ainsi, après un incident qui aurait corrompu une partie du
système de fichiers, il suffit de « rejouer » les opérations enregistrées
dans le journal pour restituer un état cohérent, ce qui est infiniment
plus sûr et plus rapide que de recourir à un logiciel de contrôle et
de restauration de la cohérence interne du système de fichiers tels
fsck sous Unix.

Avec les systèmes persistants, le problème est simplifié autant
que généralisé. Un système persistant digne de ce nom n’a ni fichiers
ni a fortiori système de fichiers. Il est de ce fait indispensable de
garantir à tout prix le maintien de la cohérence du contenu de
la mémoire virtuelle, seul lieu de conservation des données, et ce
quel que soit l’incident, y compris une coupure de l’alimentation
électrique. Les systèmes persistants disposent donc d’un système
d’enregistrement de points de contrôle, qui permet de sauvegarder
périodiquement le contenu de la mémoire, et de reprise sur inci-
dent à partir du dernier point de contrôle. Ce mécanisme n’est
pas une option comme dans les environnements classiques, mais
un fondement du système. Une conséquence amusante de ce type
de fonctionnement, qui surprit les auteurs des premiers systèmes
persistants, c’est qu’un programme d’application ne peut pas être
informé d’un arrêt du système, puisqu’il est reparti automatique-
ment comme si de rien n’était.
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Introduction
La question des réseaux informatiques et celle des systèmes d’ex-

ploitation sont en principe distinctes, et elles forment dans les cur-
sus universitaires des disciplines particulières, mais les ordinateurs
contemporains sont pratiquement toujours connectés à des réseaux
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de quelque sorte, et les techniques qui leur permettent d’y accé-
der sont tellement intimement enfouies au cœur du système qu’il
n’est guère possible de parler de celui-ci sans aborder ceux-là. De
surcroît, des systèmes sont apparus qui mettent à profit le réseau
pour regrouper plusieurs ordinateurs et les considérer comme un
seul multi-ordinateur, ou système distribué. Bref, s’il est de bonne
méthode de distinguer l’architecture des ordinateurs, qui traite de
l’organisation des éléments matériels des machines, l’architecture
des systèmes d’exploitation, qui envisage la couche logiciel d’inter-
face entre le matériel et les programmes de l’utilisateur, et l’archi-
tecture des réseaux, consacrée aux moyens de communication entre
ordinateurs distants, il est clair qu’aucun de ces domaines ne pourra
être traité sérieusement sans qu’il soit fait appel aux deux autres.

6.1 Transmettre de l’information à distance
Le problème de base à résoudre pour concevoir et réaliser un

réseau d’ordinateurs consiste à établir un échange de données entre
deux ordinateurs distants. Ce problème se divise en deux parties :
pour que les données circulent correctement elles doivent être re-
présentées selon un codage approprié commun aux deux extrémités,
et il y faut un support physique également approprié.

La position de ce problème remonte au moins à Aristote, qui a
envisagé la communication d’information entre deux personnes en
termes de message et de code. Incidemment, ce modèle est beaucoup
mieux adapté à la communication entre ordinateurs qu’à la commu-
nication entre êtres humains, qui est extraordinairement compliquée
par tout un contexte (culturel, social, sensoriel) et par des éléments
non verbaux (expressions du visage, intonations de la voix) qui
rendent ce modèle, dans ce cas, assez inapproprié. « Le langage tra-
vestit la pensée. Et notamment de telle sorte que d’après la forme
extérieure du vêtement l’on ne peut conclure à la forme de la pen-
sée travestie ; pour la raison que la forme extérieure du vêtement
vise à tout autre chose qu’à permettre de reconnaître la forme du
corps 1 ». Bref, pour les ordinateurs le modèle aristotélicien convient
bien.

L’invention du téléphone a conduit à le formaliser sous le nom
de « communication sur un canal bruité ». En effet il y a du bruit,

1 Cf. Wittgenstein, Tractatus logico-philosophicus, [138, aphorisme 4.002].
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c’est-à-dire qu’aucun canal de communication n’est parfait, certains
éléments du message sont altérés ou perdus. Dans le cas du télé-
phone c’est tolérable jusqu’à un certain point, il en résulte quelques
grésillements et bourdonnements ; Henrik Nyquist, dès les années
1920, et Claude Shannon[120] en 1948 ont posé les bases théoriques
précises de ce que veut dire ici « jusqu’à un certain point », et ces
bases constituent la théorie dite de l’information 2. Il va sans dire
que pour transmettre de l’information codée sous forme numérique,
les altérations des messages sont beaucoup moins tolérables. Nous
allons dire quelques mots très sommaires de la théorie de l’informa-
tion.

6.1.1 Théorie de l’information 3

Le transfert d’information dans un système de communication
s’effectue par messages. Un message est une suite de signes (de
symboles) tirés d’un alphabet. L’ensemble S = {m1...mi...mn} des
messages que l’on peut former à l’aide d’un alphabet donné consti-
tue une source (discrète) de messages : un texte est une suite de
messages.

La notion d’information est liée à l’ignorance du destinataire
quant aux messages émis depuis S : il n’y a apport d’information
que si le destinataire ignore le contenu du message qu’il va rece-
voir. L’incertitude, quant à la teneur du message, est d’autant plus
grande que le message a une faible probabilité d’être émis ; inverse-
ment, la réception de ce message contribue à lever une incertitude
d’autant plus grande, et apporte donc une plus grande quantité
d’information ; ainsi apparaît une relation entre la quantité d’infor-

2 Michel Volle me fait remarquer que cette expression consacrée par l’usage
est malheureuse, il serait plus approprié de dire « théorie de la communica-
tion », conformément d’ailleurs au titre de l’article de Shannon, A mathe-
matical theory of communication, (1948) [120], ou « théorie des données ».
L’ordinateur, ou le réseau de communication, contiennent et transmettent
des données, qui ne deviennent de l’information que dans l’esprit d’un être
humain, capable (et lui seul en est capable) de leur donner un sens. Voir à
ce sujet le texte de Michel Volle [132].

3 Les quatre alinéas qui suivent sont empruntés à mon livre Initiation à la
programmation avec Scheme, publié en 2011 par les Éditions Technip, avec
l’aimable autorisation de l’éditeur.
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mation d’un message mi et sa probabilité d’émission, pi, relation
représentée par la fonction logarithmique suivante 4 :

I(mi) = logα(1/pi) = − logα pi

I étant l’incertitude, ou l’information, α le nombre de symboles de
l’alphabet utilisé. On en déduit immédiatement que la valeur de
l’unité d’information est celle d’un message de probabilité 1

α
. On

prend généralement α = 2, l’unité correspondante étant le bit.
Pour donner un contenu plus facile à retenir à la formule

ci-dessus, on peut utiliser les logarithmes décimaux, et regarder la
quantité d’information transmise par un message émis avec une
certaine probabilité :

probabilité d’émission quantité d’information
p1 = 1 I(m1) = log10(1/p1) = − log10 1 = 0

p2 = 0, 1 I(m2) = log10(1/p2) = − log10 10−1 = +1

p3 = 0, 01 I(m3) = log10(1/p3) = − log10 10−2 = +2

... ...
Cette définition probabiliste de la quantité d’information d’un

message montre qu’elle dépend avant tout de la source de messages
utilisée ; cette dernière peut être caractérisée par une quantité d’in-
formation (ou incertitude) moyenne, d’après l’expression :

H(S) = −

n∑
i=1

pi × logα pi

qui permet d’évaluer a priori la quantité moyenne d’information
que peut fournir un message ; sa valeur est maximale pour des mes-
sages équiprobables. Cette grandeur a la même forme que l’entropie
thermodynamique et on l’appelle entropie de S.

L’entropie permet d’évaluer la richesse informationnelle d’un
texte ; Shannon a montré que si l’information moyenne d’un alpha-
bet de 27 signes équiprobables était : log2 27 = 4, 75 bits/lettre, le

4 On rappelle que par définition le logarithme de base α de x, noté logα x, est le
nombre m tel que αm = x. On vérifie que logα α = 1 et que, indifféremment à
la valeur de α, log 1 = 0 et log(a×b) = loga+logb. Cette dernière propriété,
très intéressante puisqu’elle permet, avec une table de logarithmes, de faire
des multiplications même si on ne connaît que la table d’addition, est (était ?)
le principe de base de la règle à calcul, qui n’est pas autre chose qu’une table
de logs en plastique.
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contenu d’un texte anglais ordinaire n’était que de 1 bit/lettre, soit
une redondance de : 1− 1

4,75
, ou 80% de signes inutiles.

6.1.2 Premières réalisations
La transmission de données entre calculateurs a précédé l’in-

vention de l’ordinateur proprement dit. En 1940 George Robert
Stibitz travaillait depuis déjà quelques années à la conception et
à la réalisation de calculateurs à relais électromécaniques pour les
Bell Telephone Laboratories. Il avait organisé une démonstration de
sa machine au Dartmouth College, dans le New Hampshire, où se
tenait le congrès de la Société américaine de mathématiques, alors
que le calculateur était à New York, à 330 km de là. Le matériel
était très encombrant et le déménager compliqué et aléatoire : Sti-
bitz décida de réaliser la démonstration à partir d’un télétype relié
par une ligne téléphonique à la machine, ce qui fut fait le 11 sep-
tembre 1940 avec un total succès. Dès lors le « problème de base »
pouvait être considéré comme résolu. On savait faire communiquer
à distance deux machines à traiter de l’information.

Dans ce cas précis le support matériel de la communication
était une ligne de téléphone en fils de cuivre, comme on en utilise
encore aujourd’hui, mais les réseaux informatiques peuvent utiliser
toutes sortes de supports matériel sans que cela modifie la nature du
problème à résoudre : fibre optique, faisceau hertzien, canal satellite,
câble coaxial, rayons infrarouge, signal laser etc. Il suffit que les
équipements à chaque extrémité soient configurés correctement, de
façon cohérente, ce qui d’ailleurs n’est pas une mince affaire.

6.1.3 Un modèle pour les réseaux
Considérons comme acquise la solution du problème de base,

faire communiquer à distance deux machines à traiter de l’infor-
mation. Avons-nous pour autant un réseau de telles machines ?
Sans doute non. Le problème de l’acheminement d’un message dans
un réseau complexe se compose de plusieurs sous-problèmes. Un
groupe d’experts de l’ISO (Organisation Internationale de Norma-
lisation) réuni de 1977 à 1986 sous la conduite d’Hubert Zimmer-
man a classé les sous-problèmes selon une échelle allant du plus
concret (support physique de la communication) au plus immaté-
riel (le logiciel de communication avec l’utilisateur). Il en est résulté
un modèle en couches nommé OSI (pour Open Systems Intercon-
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nexion) conforme au principe exposé à la section 1.4, où la couche
la plus basse correspond aux questions liées au support physique,
et la plus haute au logiciel de contact avec l’utilisateur final ; nous
allons examiner dans les sections suivantes les sous-problèmes selon
la couche du modèle qui leur correspond.

Avant d’entamer la description du contenu et des fonctions de
chaque couche du modèle OSI de l’ISO, il convient de préciser le
vocabulaire employé pour décrire les réseaux. Un réseau sert com-
munément à relier un certain nombre de points. De façon générale,
un certain nombre de points reliés par des lignes constituent un
graphe. Les points reliés sont appelés sommets (vertex en anglais)
du graphe, et la ligne qui relie deux points est appelée arc (edge en
anglais). Si l’arc qui relie un sommet A à un autre, B par exemple,
relie également B à A, on dit que le graphe n’est pas orienté ; dans
les graphes orientés les arcs ont un sens ; les graphes dont nous
parlerons sont non orientés. La figure 6.1 représente un graphe non
orienté G à sept sommets.

B
C

E

F

D

A

GG

Figure 6.1 – Graphe connexe complet

Le graphe G, ou ABCDEFG, est tel qu’entre deux quelconques
de ses sommets il existe au moins un chemin constitué d’arcs du
graphe : un tel graphe est dit connexe. De surcroît, chaque sommet
est relié par un arc à chacun des autres : c’est un graphe connexe
complet. Chaque sommet est relié par un arc à chacun des n − 1

autres sommets, et chaque arc joue le même rôle pour les deux
sommets qu’il relie, G possède donc n×(n−1)

2
arcs.

La figure 6.2 représente un grapheH à sept sommets simplement
connexe. Lorsque l’on parle de réseaux informatiques, il peut être
commode de les représenter par des graphes. Les sommets sont
alors généralement appelés nœuds du réseau, et les arcs, lignes ou
liaisons.
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B
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H

Figure 6.2 – Graphe simplement connexe

6.2 Couche 1, physique
Étant donné un support physique approprié reliant deux ma-

tériels de traitement d’information, dits équipements terminaux, le
premier sous-problème consiste à établir les conditions pour que
chacun de ces deux équipements puisse émettre et recevoir des si-
gnaux en provenance de et destinés à l’autre. Il s’agit du « problème
de base » vu plus haut, que G. Stibitz a été le premier à résoudre, et
dont Nyquist et Shannon ont posé les bases théoriques, notamment
en donnant le débit maximum d’information que peut assurer un
canal donné.

En restant schématique, l’envoi d’informations se fait en mo-
dulant une onde hertzienne, ou en modifiant la tension électrique
appliquée aux bornes d’un conducteur. La modification de la phase
de l’onde ou de la tension est un signal élémentaire, en d’autres
termes un bit, une unité d’information. Une telle modification ne
peut intervenir qu’un certain nombre de fois par seconde, selon les
caractéristiques du matériel. Cette fréquence maximum de varia-
tion définit la largeur de bande du canal, qui limite la quantité
d’information qu’il peut acheminer.

La solution du sous-problème de la couche 1 fait appel à la
physique, à l’électronique, au traitement du signal plus qu’elle ne
constitue une question d’informatique à proprement parler, et nous
ne nous y attarderons guère. Signalons simplement quels sont les
types de supports les plus couramment utilisés pour édifier des ré-
seaux informatiques :

— Pour construire un réseau privé dans un immeuble ou sur un
campus (LAN, pour Local Area Network), la solution clas-
sique consiste à poser de la fibre optique dès que les distances
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sont un peu grandes, de la paire torsadée téléphonique pour
le câblage dit capillaire qui alimente les prises terminales.
Les systèmes sans fil (hertzien ou infrarouge) sont aussi uti-
lisés. Les débits peuvent atteindre les 100 milliards de bits
par seconde (100 Gigabit/s).

— Les réseaux à longue distance ou WAN (pour Wide Area
Network), comme ceux des fournisseurs d’accès à l’Internet
(FAI), ont recours à plusieurs types de solutions : location
de lignes aux opérateurs de télécommunications ou aux pro-
priétaires de réseaux d’autre nature (compagnies de chemin
de fer, de distribution d’électricité, de métro...), construc-
tion d’infrastructures propres. Physiquement, la liaison est
presque toujours de la fibre optique. Les débits sont de
l’ordre du milliard de bits par seconde. Le satellite est peu
utilisable à cause du délai de propagation, qui est d’un quart
de seconde aller et retour (pour atteindre les antipodes il faut
deux rebonds sur des satellites, soit une demi-seconde).

— Pour l’accès des particuliers à leur FAI, l’usage de modems
et du réseau téléphonique commuté ne disparaîtra pas tout
de suite. Les accès dits à haut débit (câble TV ou ADSL sur
réseau téléphonique, de plus en plus souvent fibre optique)
procurent un débit de l’ordre de un à plusieurs millions de
bits par seconde (Mégabit/s).

Tous ces débits sont donnés à titre indicatif et très provisoire.
Signalons aussi que dans certains cas la couche physique est capable
d’acheminer des signaux simultanément dans les deux sens.

6.3 Notion de protocole
Pour acheminer un flux de données sur un canal de transmis-

sion, les systèmes matériels et logiciels qui composent le réseau uti-
lisent un ensemble de règles, de conventions et de mises en forme
des données qui constituent un protocole de communication. Une
des fonctions des protocoles de communication est la détection et
la correction des erreurs de transmission, qui constituent un des
problèmes classiques des réseaux informatiques.

Les canaux de communication tels que les lignes téléphoniques
sont soumis à des erreurs aléatoires, qui constituent le bruit. Pour
une conversation cela provoque juste un parasite sonore désa-
gréable, mais dans le cas de la transmission de données ce sera
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une altération de nature à rendre le message inutilisable. Il faut
donc instaurer des moyens de vérifier l’intégrité des données et,
quand c’est possible, de la restaurer quand elle a été altérée. Ceci
devra être fait pour chaque couche du protocole de transmission,
mais c’est spécialement important pour la couche 2, dont le rôle est
de garantir aux couches supérieures un canal de transmission sans
erreur d’un flux de bits. Le traitement de ce problème peut différer
selon qu’il s’agit de liaisons point à point ou de diffusion.

Le protocole définit également, pour chaque couche, d’autres
caractéristiques de la transmission : les messages sont généralement
découpés en unités de taille homogène (appelés trames pour la
couche 2 et paquets pour la couche 3), les nœuds reçoivent lorsque
c’est nécessaire des adresses qui permettent, comme celles des per-
sonnes, de les trouver et de les identifier dans le réseau.

Nous pouvons nous représenter un protocole de communication
comme un protocole au sens habituel ; quand deux entités du réseau
entament une communication, l’échange se passe un peu comme
ceci :

« Attention, je vais t’envoyer un message de plusieurs pages,
es-tu prêt à le recevoir ?

— Oui, je suis prêt.
— Tu es sûr ?
— Oui, je suis prêt.
— Je vais envoyer.
— Vas-y.
— (Envoi de la première page, attachée à une flèche tirée à

l’arc).
— Bien reçue.
— (Envoi de la seconde page, enroulée autour d’un caillou lancé

avec une fronde).
— Bien reçue.
— (Envoi de la troisième page, confiée à un pigeon voyageur).
— Bien reçue.
— Normalement tu as dû recevoir trois pages numérotées de 1

à 3. Vérifie que tous les numéros sont là et dans le bon ordre.
— Oui, j’ai bien reçu toutes les pages dans le bon ordre. »
Comme signalé à la section 1.4, dans un modèle en couches les

protocoles définissent les règles du dialogue entre couches de même
niveau sur des systèmes différents, cependant que les interfaces spé-
cifient les services qu’une couche inférieure fournit à la couche qui
lui est immédiatement supérieure au sein du même système.
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6.4 Couche 2, liaison de données
La couche 2 du modèle de transmission de données, appelée

couche de liaison de données, assure la transmission fiable d’un
flux de bits entre deux nœuds adjacents du réseau sur un support
physique procuré par la couche 1. Quand on dit adjacents, il faut
entendre que les deux équipements terminaux sont connectés par
un canal de transmission qui peut être vu comme un fil, c’est à dire
que les bits émis à une extrémité sont délivrés exactement dans le
même ordre à l’autre extrémité. Le travail de la couche 2 consiste
à faire en sorte qu’ils soient également transmis sans omission ni
déformation et remis à la couche 3. La figure 6.3 représente cette
coopération des fonctions fournies par chaque couche 5.

de données
Couche 2, liaison

protocole couche 2

Couche 1, physique

interface interface

Couche 4, transport

protocole couche 4

interfaceinterface

Couche 3, réseau

protocole couche 3

interfaceinterface

Figure 6.3 – Les trois couches basses

La liaison peut être établie de deux façons. La plus simple est
la liaison point à point, c’est celle que vous utilisez quand vous

5 Sans trop entrer dans les détails, signalons que la couche de liaison de don-
nées comporte deux sous-couches, dont l’une est la couche MAC (Medium
Access Control, ou commande de l’accès au support physique). Dans le cas
des réseaux locaux (Local Area Networks, LAN’s), la couche 2 se réduit pra-
tiquement à la sous-couche MAC, et de ce fait on rencontre les expressions
couche MAC, adresse MAC etc.
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vous connectez de votre domicile à l’Internet avec un modem. Le
chemin entre votre modem et le modem de votre fournisseur d’ac-
cès est une liaison point à point, d’ailleurs gérée par le protocole
PPP (Point to Point Protocol, comme son nom l’indique), c’est à
dire que vous pouvez considérer ce lien logiquement comme un fil
unique, même si le réseau téléphonique traversé est, du point de vue
téléphonique, complexe. Derrière le modem du fournisseur d’accès
(FAI), il y a bien sûr un réseau complexe qui n’est sans doute plus
point à point. La liaison point à point est généralement le procédé
utilisé pour les liaisons à longue distance qui constituent un réseau
étendu, ou WAN (pour Wide Area Network), par opposition à un
réseau local (LAN, pour Local Area Network), c’est-à-dire cantonné
à un immeuble ou à un campus. Ces notions de longue distance et
de localité sont toutes relatives, par exemple les réseaux d’accès à
l’Internet des distributeurs de télévision par câble sont des réseaux
locaux à l’échelle d’une ville comme Paris (on parle alors de réseau
métropolitain).

Un réseau local est constitué différemment : un assez grand
nombre de nœuds partagent une même infrastructure de câblage 6,
par exemple dans un bâtiment Cette infrastructure constitue un
unique réseau d’acheminement, qui offre notamment un service de
couche 2. Le réseau d’acheminement réunira un ou plusieurs ré-
seaux de couche 2 et accédera à un réseau plus vaste de couche 3,
par exemple l’Internet, par l’intermédiaire d’un ordinateur spécia-
lisé appelée passerelle de couche 3, ou plus souvent routeur. Mais
examinons pour l’instant les réseaux de couche 2. Nous pouvons
les considérer comme des graphes connexes complets conformes à
la figure 6.1, c’est-à-dire que chaque nœud peut « parler » directe-
ment à tous les autres nœuds du même réseau (de couche 2). Ces
réseaux utilisent généralement la diffusion (broadcast), c’est-à-dire
que l’émetteur envoie les signaux à tous les nœuds du réseau, à
charge pour le destinataire de reconnaître ceux qui lui sont desti-
nés par un procédé d’adressage décrit à la section suivante. C’est le
cas des réseaux locaux de type Ethernet.

6.4.1 Notion d’adresse réseau
Dans le cas d’une liaison point à point, identifier le destinataire

d’un message n’est pas difficile puisqu’il n’y a que deux nœuds en

6 ... ou de transmission sans fil.
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cause : l’émetteur à une extrémité, le récepteur à l’autre. Dans le
cas de la diffusion, l’émetteur d’un message doit désigner le destina-
taire. Et au niveau de la couche 3, le réseau est complexe et contient
généralement de nombreux nœuds qu’il faut identifier et atteindre.
À cette fin chaque nœud se voit attribuer une adresse réseau. Aux
couches 2 et 3 correspondent des visions différentes du réseau, et
de ce fait elles possèdent des systèmes d’adressage distincts.

Adresse de couche 2

L’architecture des réseaux Ethernet, dont notamment leur sys-
tème d’adressage, a été conçue par Xerox et réalisée par Xerox, Intel
et Digital Equipment. Plus tard, l’IEEE (Institute of Electrical and
Electronics Engineers) a promulgué la norme 802.3 censée décrire
Ethernet, mais qui introduit quelques divergences qui obligent les
industriels à s’adapter aux deux variantes, ce qui n’est pas trop
compliqué.

Pour qu’un ordinateur puisse être connecté à un réseau Ether-
net, il faut qu’il possède une interface matérielle qui se présente
généralement sous la forme d’une carte dite carte réseau, ou NIC
(Network Interface Card). Un ordinateur peut posséder plusieurs
cartes réseau, pour être relié plusieurs fois au même réseau, ou à
plusieurs réseaux de couche 2 différents, ce qui lui permet éventuel-
lement de jouer le rôle de routeur, c’est-à-dire de faire passer les
données d’un réseau à un autre.

Chaque interface réseau reçoit à sa fabrication une adresse
de couche 2, dite « adresse MAC » (MAC pour Medium Access
Control) ou adresse Ethernet, ou encore adresse physique (parce
qu’associée à un dispositif matériel), de 48 bits de longueur. L’uni-
cité à l’échelle mondiale des adresses MAC est assurée par l’IEEE,
qui attribue à chaque industriel producteur un préfixe, charge à lui
de gérer l’unicité des chiffres suivants. Ainsi l’adresse MAC de l’or-
dinateur que j’utilise en ce moment est 00:48:54:C0:C9:04, où chaque
groupe de deux caractères isolé par « : » représente un octet codé
en hexadécimal, soit une valeur décimale comprise entre 0 et 255
(voir annexe A section A.4.1 pour les détails de cette représenta-
tion). Ceci assure en principe qu’il n’y aura pas sur le réseau de
dysfonctionnements provoqués par deux interfaces ayant la même
adresse, mais en fait il est possible de modifier une adresse MAC
dynamiquement par logiciel. Cela dit les logiciels raisonnables (et
non piratés) ne font pas cela.

00:48:54:C0:C9:04
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6.4.2 Détection et correction d’erreur pour la couche 2
Découpage en trames (framing)

La transmission de la voix par un procédé analogique se fait
selon un flux continu de signaux, à l’image de la parole. La nécessité
du contrôle d’intégrité des données impose pour la transmission de
données numériques de procéder autrement. Pour les locuteurs de
langues non écrites, la parole se manifeste comme un flux continu, et
la conscience de son découpage en mots n’est pas de la même nature
que pour les locuteurs de langues écrites qui ont dû apprendre à
procéder mentalement à ce découpage (voir [72] pour de plus amples
éclaircissements). De façon analogue, le flot de bits, que la couche
1 est prête à fournir à la demande, est découpé par les protocoles
de couche 2 en entités discrètes de longueur limitée appelées trames
(en anglais frame).

Le découpage du flot de données en trames est en fait plutôt
une image : il nous faudra un moyen de reconnaître le début et la
fin d’une trame. Les solutions raisonnables sont :

— séparer les trames par des intervalles de « silence » ; cette
solution est employée pour les réseaux locaux parce que le
débit est élevé et la bande passante disponible à profusion ;

— utiliser des trames de longueur soit fixe, soit variable mais
connue en cours de transmission, et compter les bits ; cette
solution et la suivante sont employées notamment pour les
liaisons à longue distance ;

— utiliser des configurations de bits particulières et inutilisées
par le codage des données pour marquer le début et la fin
de trames, et guetter leur occurrence, ce qui est la solution
la plus répandue, éventuellement combinée au comptage de
bits.

Détection de trames endommagées

Les trames seront les entités dont les procédures de détection
d’erreur vérifieront l’intégrité. Nous considérons ici, dans un pre-
mier temps, le traitement des trames qui arrivent à destination mais
dont le contenu a été altéré par un parasite quelconque.

Le principe de base de la détection de ce type d’erreur est la
redondance : avant d’émettre une trame, la station émettrice ajoute
au message à transmettre (ici le contenu de la trame) une informa-
tion supplémentaire calculée à partir des bits du message selon un
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algorithme dit de hachage (hash). À la réception, la station récep-
trice effectue le même calcul ; si elle ne trouve pas le même résultat
c’est qu’il y a eu une erreur. Cette information supplémentaire cal-
culée à partir de l’information utile s’appelle somme de contrôle (en
anglais checksum). L’algorithme de calcul de la somme de contrôle
doit bien sûr être le même aux deux extrémités : cette convention
fait partie du protocole. Une méthode très répandue est le code de
redondance cyclique (CRC), dont nous ne donnerons pas le calcul
ici.

Si le calcul prévu par la procédure donne le résultat attendu,
il n’y a pas d’erreur et alors, dans le cas des réseaux longue dis-
tance (WAN), le protocole de couche 2 (côté récepteur) envoie un
acquittement (conventionnellement ACK) à l’émetteur ; sinon il en-
voie par exemple un acquittement négatif (NAK) qui demande à
l’émetteur de retransmettre la trame considérée. Pour savoir quelle
trame est acquittée, le protocole prévoit aussi que chaque trame
comporte un numéro de séquence permettant de la distinguer des
précédentes et des suivantes. Ethernet procède sans échange d’ac-
quittements : les détections d’erreur sont signalées par un signal de
couche 1.

Il existe aussi des codes auto-correcteurs, dont le plus célèbre
est le code de Hamming : au prix de plus de redondance, ces codes
permettent de connaître précisément les positions des bits erronés,
s’il n’y en a pas trop, et partant de les corriger. Cela semble sé-
duisant mais n’est pas tellement utilisé, parce qu’en pratique on
observe que les trames sont le plus souvent soit intactes, soit trop
fortement endommagées pour être corrigées. De plus les trames en-
dommagées sont rares sur la plupart des réseaux modernes, où les
taux d’erreur sont de l’ordre de 10−6, voire moins 7. Il est plus effi-
cace de retransmettre les données erronées.

Contrôle de flux

Les contrôles d’erreur évoqués à la section précédente faisaient
l’hypothèse que les délais de transmission d’une trame et de l’ac-

7 Ceci est vrai des réseaux locaux et des réseaux téléphoniques des pays riches,
maintenant presque toujours numériques. Ce ne l’est pas dans les pays dotés
de réseaux téléphoniques et électriques de mauvaise qualité, qui de ce fait
ont parfois intérêt à continuer à utiliser des protocoles moins rapides mais
plus robustes.
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quittement en sens inverse étaient négligeables, ce qui est vrai pour
un réseau local mais beaucoup moins pour une liaison à longue dis-
tance. Un protocole de couche 2 doit également se prémunir contre
un autre risque : si un émetteur a une interface réseau beaucoup
plus rapide que celle du récepteur, le récepteur ne pourra pas ab-
sorber toutes les trames qui lui sont envoyées et des données vont se
perdre. Il faut donc un algorithme pour réguler les transmissions,
et notamment s’assurer que les trames envoyées sont bien reçues.

La solution évoquée à la section précédente, qui consiste, avant
d’envoyer une nouvelle trame, à attendre d’avoir reçu un acquitte-
ment positif pour la précédente, répond à la question, mais impose
un ralentissement insupportable et une utilisation extrêmement in-
efficace de la bande passante. Cette inefficacité est particulièrement
grande pour les liaisons par satellite géostationnaire, qui peuvent
avoir un débit élevé mais un temps de transit incompressible de
l’ordre d’un quart de seconde : s’il fallait attendre l’acquittement,
on aurait un débit de deux trames par seconde, ce qui ne serait
évidemment pas acceptable.

Pour améliorer cette situation, les protocoles adaptés aux liai-
sons à délai de transit important utilisent un algorithme basé sur
le principe suivant : l’émetteur n’attend l’acquittement de la trame
numéro n qu’après l’émission de la trame n + p, avec p > 1. Le
délai nécessaire à la transmission de p trames est appelé délai de
garde (timeout interval). Cette méthode est appelée pipeline, parce
que l’on enfourne les trames dans le « tuyau » sans attendre que les
précédentes soient sorties. Comme à la section précédente, chaque
trame est dotée d’un numéro de séquence qui permet de savoir, no-
tamment, quelle trame acquitte tel ACK (dans le cas des protocoles
WAN).

Mais alors, que va-t-il se passer si une trame, au milieu d’un long
message, est corrompue ou n’arrive pas ? Rappelons que la couche
2 a pour mission de délivrer les trames dans l’ordre à la couche
3. Un tel cas est illustré par la figure 6.4, où nous supposerons
p = 3. Soit le cas d’école suivant : la trame 2 est émise, mais perdue
ou détériorée en route. Le récepteur détecte le problème sans coup
férir : si la trame est détériorée, par une des méthodes de détection
d’erreur indiquées à la section précédente 6.4.2 ; si elle est perdue
en route, le contrôle des numéros de séquence montre que la trame
1 devrait être suivie de la trame 2, or il reçoit à la place la trame 3
(ou une autre...), qui ne satisfait pas aux règles du protocole.
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Dès que le récepteur constate la défaillance de la trame 2, il
rejette imperturbablement toutes les trames que l’émetteur conti-
nue à lui envoyer. L’émetteur va-t-il s’en apercevoir ? Oui : après
p émissions, soit après la trame n + p = 2 + 3 = 5, il s’attend
à recevoir l’acquittement de la trame 2, attente déçue. Que va-t-il
faire alors ? Il va simplement réémettre la trame 2, puis toutes ses
suivantes. Le récepteur va enfin recevoir la trame 2 attendue, il va
l’accepter et l’acquitter, ainsi que les suivantes.
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Figure 6.4 – Fenêtre glissante

Combien de trames ont été perdues ou rejetées ? p + 1 = 4.
Pour que l’algorithme soit correct, il faut que l’émetteur garde en
mémoire au moins les p + 1 dernières trames émises, afin de pou-
voir les réémettre. Plus p sera grand, plus le protocole sera rapide,
mais plus il faudra de mémoire dans les équipements de transmis-
sion, ce qui est un compromis constant pour les performances des
ordinateurs et autres machines à traiter de l’information.

Du côté du récepteur, notre algorithme rejette toutes les trames
consécutives à la trame détériorée : on pourrait imaginer de conser-
ver les trames correctes qui arrivent après la trame détériorée.
Ainsi lorsqu’à l’expiration du délai de garde l’émetteur constate-
rait qu’une trame n’a pas été acquittée, il n’aurait que celle-là à
retransmettre. Bien sûr, tant que le récepteur n’a pas reçu la trame
détériorée, il ne peut pas remettre les suivantes à la couche réseau,
il doit donc les garder dans sa mémoire de travail (une telle zone de
mémoire est appelée communément buffer). Le nombre de trames
que le récepteur peut ainsi conserver définit la largeur d’une fenêtre
de réception. Notre exemple initial, où toutes les trames consécu-
tives à l’erreur étaient rejetées, correspond à une fenêtre de largeur
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1. Le nombre de trames que l’émetteur s’impose de garder en mé-
moire en attendant leur acquittement s’appelle la fenêtre d’émis-
sion. Cet algorithme est nommé protocole de la fenêtre glissante.

La largeur des fenêtres, en émission et en réception, peut varier.
Cet algorithme est dit de contrôle de flux : si l’émetteur constate
que sa fenêtre d’émission est toujours vide, il peut augmenter son
débit si c’est possible. Si le récepteur ne peut pas épuiser la fenêtre
de réception, la fenêtre d’émission va se remplir et l’émetteur sera
obligé de s’interrompre.

Ce protocole de fenêtre glissante, que nous venons de décrire
pour la couche 2, est également utilisé pour la couche 4 de transport
(TCP).

6.4.3 Un exemple de liaison de données : Ethernet
Si vous utilisez un réseau local à votre domicile ou sur votre lieu

de travail, il y a de fortes chances que ce soit un réseau Ethernet.
Cette technologie a supplanté la plupart des concurrentes, et de
nos jours une carte réseau de ce type vaut une quinzaine d’Euros.
L’auteur se rappelle la première « carte » Ethernet qu’il a achetée
(pour le compte de son employeur) : elle avait coûté l’équivalent
de 100 000 Euros et il avait fallu abattre une cloison pour loger
l’armoire d’extension de 50 cm de large, 120 cm de hauteur et 70
cm de profondeur nécessaire à son installation. C’était un matériel
DEC connecté à un VAX 11/750 sous VMS, en 1984.

Ethernet a été inventé au PARC (Palo Alto Research Center)
de Xerox en 1973 par Robert Metcalfe et David Boggs. Le lecteur
trouvera dans le livre de réseau de Tanenbaum [127] une description
historique et technique détaillée. La première version commerciali-
sée a été introduite en 1980 par Xerox, Intel et DEC. Le protocole
a été normalisé par l’IEEE en 1983 sous la référence 802.3, toujours
en vigueur.

Le nom Ethernet est un hommage à un ancêtre de ce proto-
cole, ALOHA, inventé à l’Université d’Hawaï en 1970 par Norman
Abramson. Comme Abramson voulait relier les campus de l’univer-
sité, situés sur des îles différentes, ALOHA était un protocole de
réseau par radio, les communications circulaient dans l’éther.

Selon ALOHA, toutes les stations émettent et reçoivent sur la
même bande de fréquence. Les messages sont découpés en trames,
identifiées par un numéro d’ordre et l’adresse de la station desti-
nataire. C’est une conversation à plusieurs : toutes les stations re-
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çoivent toutes les trames, identifient celles qui leur sont destinées,
jettent les autres.

La communication par radio entre sites distants interdit toute
idée de contrôle centralisé : ALOHA doit prévoir le cas où deux sta-
tions (ou plus) voudraient commencer à émettre en même temps.
Cette circonstance est nommée collision, et résulte en trames
brouillées, incompréhensibles, en un mot perdues. Il va falloir ré-
émettre ces trames perdues, et si possible en évitant de provoquer
une nouvelle collision, sinon le protocole n’aboutira jamais.

Pour diminuer le risque de nouvelle collision, ALOHA utilise un
algorithme probabiliste : chacune des stations qui a émis une trame
perdue à cause de la collision calcule un nombre aléatoire, en déduit
un intervalle de temps et réémet. La probabilité que deux stations
aient calculé le même délai est très faible ; si néanmoins c’est le cas
une nouvelle collision a lieu, et il faut réitérer le calcul. La proba-
bilité que deux stations calculent trois fois de suite le même délai
est tellement faible que cet algorithme, en pratique, fonctionne très
bien. Il peut être encore amélioré au moyen d’une horloge centrale
qui émet un signal dont la période est égale au délai de transmission
d’une trame à travers le réseau : les trames ne peuvent être émises
qu’au « top » d’horloge donné par ce signal. Cette discrétisation des
émissions améliore l’efficacité du réseau en diminuant l’intervalle de
temps minimum avant réémission en cas de collision.

Ethernet utilise le même principe qu’ALOHA : le support phy-
sique du réseau est accessible par toutes les stations simultanément,
qu’il s’agisse d’un câble coaxial comme dans les années 1980, de liai-
sons en paires torsadées dans les années 1990, de fibre optique, d’un
réseau hertzien, comme la mode (fort pratique mais avec quelques
problèmes de sécurité induits) s’en répand en ce début de millénaire,
de liaisons infra-rouges, etc. Il y a donc des collisions. Ethernet ap-
porte deux perfectionnements par rapport à ALOHA :

— les stations écoutent le trafic sur le câble avant d’émettre et,
si le câble est occupé, observent un délai avant de réessayer ;

— si une collision se produit, les émetteurs la détectent immé-
diatement et cessent d’émettre.

Ces améliorations confèrent au protocole Ethernet le qualifica-
tif CSMA-CD (Carrier Sense Multiple Access with Collision Detec-
tion, ou accès multiple avec écoute de la porteuse et détection de
collision).

Les aspects non déterministes, probabilistes, du protocole
Ethernet ont pu inquiéter : et s’il y a sans arrêt des collisions, alors
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le réseau sera bloqué ? Les concurrents ont bien sûr mis à profit ces
angoisses pour faire la promotion de leurs protocoles déterministes,
beaucoup plus lourds et moins efficaces, tel Token ring d’IBM, au-
jourd’hui bien oublié. Le succès d’Ethernet, qui a été total, est un
argument de plus pour croire aux résultats du calcul des probabili-
tés.

La convergence des algorithmes d’Ethernet impose un certain
nombre de contraintes sur la topologie et l’organisation physique
des réseaux. Il faut notamment qu’une trame puisse traverser le
réseau aller et retour selon son diamètre (c’est-à-dire entre les deux
nœuds les plus « éloignés » l’un de l’autre) dans un délai aller et
retour de 51,2 µs. Pour la première version d’Ethernet sur coaxial
à 10 Mbps (mébibits par seconde), dite 10Base5, cette condition
imposait qu’il n’y ait pas plus de 2,5 km de câble et pas plus de 4
répéteurs entre les nœuds. Un répéteur est un matériel de couche 1
qui possède plusieurs interfaces connectées chacune à un segment
de réseau et qui se contente de recevoir, amplifier et retransmettre
les signaux sur toutes ses interfaces ; il peut ainsi étendre le réseau
à plusieurs segments de câble ; les répéteurs sont aujourd’hui le plus
souvent abandonnés au profit des commutateurs. Typiquement, les
réseaux Ethernet sur paires torsadées sont organisées selon une to-
pologie en étoile autour d’un commutateur (switch) . La leçon pra-
tique à retenir est que s’il est commode d’étendre son réseau en
multipliant des commutateurs en cascade (comme des prises mul-
tiples pour l’électricité), il vient un moment où l’on crée des boucles,
et alors le réseau se met à adopter des comportements erratiques
et non souhaités : ce n’est pas forcément une panne franche, par
moments cela marche, par moments non, c’est-à-dire que c’est une
panne difficile à diagnostiquer.

Un commutateur, au lieu de propager le signal sur toutes les
interfaces, ne l’envoie que sur celle qui correspond à l’adresse de
destination de la trame reçue. Comment le commutateur connaît-il
l’adresse de destination de la trame ? Par apprentissage : lorsqu’il
reçoit une trame pour une station qui ne s’est jamais manifestée,
il agit comme un répéteur et la diffuse à toutes ses interfaces. Dès
qu’une station s’est manifestée il conserve son adresse dans une
table et n’envoie qu’à elle les trames qui lui sont destinées. Cette
nouvelle organisation permet accessoirement de diminuer considé-
rablement le nombre de collisions, puisqu’ainsi seules les stations
concernées écoutent le trafic qui leur est destiné. Cela améliore aussi
la sécurité. Pourquoi alors ne pas l’avoir fait plus tôt ? Parce qu’il
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a fallu du temps pour pouvoir fabriquer à des coûts raisonnables
une électronique suffisamment complexe et rapide : échantillonner
un signal à 10 MHz (et maintenant 100 MHz pour le FastEthernet,
1 GHz pour le GigabitEhernet, demain 10 GHz) et analyser à la
volée l’adresse MAC de destination semble banal, mais ne l’était
pas au début des années 1980.

Signalons aussi que la fibre optique, support très rapide, per-
met d’outrepasser la règle des quatre répéteurs, ce qui en fait un
support de choix pour les épines dorsales (backbones) de réseaux
de campus, voire de métropole (Metropolitan Area Networks, ou
MAN) comme le Réseau Académique Parisien, qui reliait naguère
plusieurs universités et centres de recherches parisiens au moyen de
fibres optiques posées dans les tunnels du métro.

Saisissons l’occasion de cette section consacrée à Ethernet pour
signaler le nombre considérable d’innovations capitales dont l’ori-
gine se trouve au PARC créé en 1970 par Xerox : Ethernet pour
commencer. Le langage de description de page PostScript : les fon-
dateurs d’Adobe ont quitté Xerox, frustrés de voir leur employeur ne
rien faire de leur invention. L’impression laser vient aussi du PARC
(1971). Les interfaces à fenêtres popularisées par le Macintosh ont
été inventées par Alan Kay à la fin des années 1960 alors qu’il tra-
vaillait au langage Smalltalk, d’abord à l’Université d’Utah, puis à
l’Université Stanford, enfin au PARC de 1972 à 1983, où Steve Jobs
le rencontra et conçut le projet d’un ordinateur Apple sur la base
de ces idées. Incidemment, si la programmation par objets avait
déjà été inventée en 1965 par l’équipe de Simula, Alan Kay et le
PARC ont beaucoup contribué à son succès avec Smalltalk. Bref,
que serions-nous sans eux. Une des explications de cette fécondité
extraordinaire dont Xerox a finalement tiré peu de gains financiers
est que le PARC avait été créé essentiellement pour dépenser à
fonds perdus une partie des bénéfices énormes engendrés par les
brevets de la photocopie à sec, afin d’éviter qu’ils n’engendrent des
impôts également énormes. La rentabilité était un non-objectif.

6.5 Couche 3, réseau
Dès que notre réseau comportera un nombre n d’équipements

terminaux supérieur à 2 ou 3, il ne sera plus raisonnable de les
relier deux à deux par des supports physiques dont le nombre se-
rait égal, nous l’avons vu, à n×(n−1)

2
, même s’il s’agit de faisceaux
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hertziens. Il faut donc acheminer les messages par un trajet com-
plexe qui passe par plusieurs segments de liaison de données. Ce
sous-problème suppose résolu le précédent (en d’autres termes, la
couche 3 fonctionne en utilisant les services fournis par la couche
2) et constitue le problème du réseau proprement dit.

6.5.1 Commutation de circuits
Une première solution consiste à établir un circuit entre deux

équipements en sélectionnant un certain nombre de segments de
câble (par exemple) qui, mis bout à bout, constituent un itinéraire
de l’un à l’autre. Aux jonctions des segments devront se trouver
des équipements de transmission de données capables de jouer le
rôle de poste d’aiguillage pour les signaux échangés. Nous aurons
ainsi constitué un circuit physique, dit circuit commuté, qui une fois
établi peut être considéré comme l’équivalent d’une liaison point à
point. C’est ainsi que fonctionnent, par exemple, les réseaux de télé-
phones, fussent-ils mobiles : pendant une communication, un circuit
physique est établi entre les deux correspondants, circuit constitué
de plusieurs segments aux jonctions desquels se trouvent des équi-
pements de commutation capable d’associer une destination à un
numéro.

Le réseau téléphonique automatique (dit « commuté ») est
constitué de lignes physiques qui résolvent le problème de base et re-
lient entre eux des équipements terminaux (des téléphones fixes ou
portables, des modems, des fax...) et des équipements de transmis-
sion de données, qui sont essentiellement des auto-commutateurs.
Quand vous composez un numéro de téléphone vous utilisez une
ligne (de cuivre pour un téléphone fixe, hertzienne pour un por-
table) qui vous met en relation avec l’auto-commutateur du sec-
teur ; celui-ci peut identifier la destination de votre appel d’après le
numéro de votre correspondant et sélectionner une ligne qui va soit
atteindre directement votre correspondant dans le cas d’un appel
local, soit atteindre un autre auto-commutateur qui va lui-même sé-
lectionner une ligne propre à acheminer votre communication vers
votre correspondant, qui après quelques étapes entendra sonner son
téléphone. Pendant toute la durée de votre conversation les diffé-
rents segments de ligne qui auront été sélectionnés par les auto-
commutateurs successifs seront réservés à votre usage exclusif. Ils
constitueront un circuit commuté, et pour cette raison le réseau
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téléphonique est qualifié de réseau à commutation de circuits, ou
réseau commuté tout court.

Si un des auto-commutateurs du circuit n’a plus de ligne libre
au moment de votre appel, celui-ci ne pourra pas être établi et
une voix enregistrée vous suggérera de renouveler votre appel ulté-
rieurement. Cette nécessité de réserver physiquement un canal de
communication de bout en bout pour une communication indivi-
duelle, même quand vous et votre interlocuteur marquez une pause
dans la conversation, est une limite du réseau téléphonique.

6.5.2 Commutation de paquets
Beaucoup de réseaux informatiques ont fonctionné en se conten-

tant de la commutation de circuits, ce qui, soit dit en passant, re-
vient à se ramener à des liaisons de couche 2 : une fois le circuit
établi, on a l’illusion d’une liaison unique. Depuis la fin des années
1960 une autre idée s’est imposée. Monopoliser un circuit physique
pour une seule communication semblait logique pour acheminer la
voix lors d’un échange téléphonique : cela correspondait au modèle
de taxation des compagnies de téléphone, la voix exige pour être
transmise sans déformation le respect de la cadence d’émission des
impulsions, ce que l’on appelle l’isochronie, à l’époque la transmis-
sion était analogique, et le débit prévisible et à peu près constant.
Mais pour la transmission de données l’impératif d’isochronie est
moins fort et l’on peut imaginer d’autres solution.

Pour comprendre les réseaux d’ordinateurs il peut être utile de
les comparer à d’autres types de réseaux : téléphonique, ferroviaire,
électrique, routier, de distribution d’eau ou de courrier postal. Tous
ces réseaux ont des caractéristiques communes ; dès qu’ils atteignent
une certaine taille, l’acheminement d’un message (ou respective-
ment d’une communication téléphonique, d’un wagon de marchan-
dises, d’une quantité d’énergie électrique, d’une lettre...) pose des
problèmes d’itinéraire et de vérification de bon acheminement. Il
faut aussi optimiser l’usage du réseau : chaque wagon n’a pas sa
propre locomotive du départ à l’arrivée, mais il peut être accroché
successivement à différents trains qui le rapprocheront de sa desti-
nation, ce que nous appellerons du multiplexage (de messages ou
de wagons).

Tentons une comparaison avec le réseau téléphonique : lorsque
nous avons résolu le problème de base, faire communiquer deux
équipements, nous avons l’équivalent d’une paire de talkie-walkie.
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C’est un bon début, mais si nous pensons à la façon dont nous utili-
sons le téléphone, pour appeler par une procédure automatique un
abonné au Japon ou un portable en rase campagne, nous concevons
qu’il faut bien des équipements et des techniques pour passer du
stade « talky-walky » à un vrai réseau complexe, ou de la couche 1
à la couche 2 en l’occurrence.

Circuits virtuels
Pensons maintenant à la circulation de wagons de marchandises

dans un réseau ferré : ils sont accroché à des locomotives pour for-
mer des trains. Soit par exemple un wagon à acheminer de Lille à
Nice. Il va d’abord être accroché à un train Lille–Paris. À Paris,
le train va être démembré dans une gare de triage et notre wagon
accroché à un nouveau train Paris-Marseille, en compagnie de nou-
veaux compagnons wagons. À Marseille un nouveau triage aura lieu
à l’issue duquel un train venant par exemple de Perpignan mènera
notre wagon jusqu’à Nice. Ces trois trains successifs auront roulé à
des vitesses différentes en comportant des wagons différents, mais
nous pouvons dire, du point de vue de l’entreprise lilloise qui en-
voyait le contenu d’un wagon de Lille à Nice, qu’ils ont constitué un
unique train virtuel Lille–Nice pour le wagon qui nous intéresse. Sur
aucun des trois segments de la ligne virtuelle Lille–Nice, le wagon
n’a eu besoin d’un conducteur informé de la destination et de l’iti-
néraire détaillé pour y parvenir : le conducteur de la locomotive et
les opérateurs des postes d’aiguillage ont assuré son acheminement.
Il fallait juste une étiquette (sans doute à code barre ou électro-
nique) « Nice » sur le wagon pour qu’il soit correctement aiguillé
lors des opération de triage.

Les réseaux informatiques conformes à la norme X25, dont
l’exemple en France est le réseau Transpac, popularisé en son temps
par le Minitel dont il était le support, fonctionnent selon un prin-
cipe conforme à la métaphore du train de marchandises. Le flux
d’informations est découpé en paquets de taille plus ou moins fixe,
quelques centaines à quelques milliers de caractères, et ces paquets
vont être acheminés par un circuit virtuel. Lorsque l’on veut établir
une communication entre deux nœuds du réseau, on commence par
déterminer un circuit virtuel qui passe par différents équipements
intermédiaires que nous appellerons concentrateurs. Un concentra-
teur est un ordinateur spécialisé qui dispose d’un certain nombre
de lignes de communications, d’une mémoire et d’un logiciel. Le
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logiciel du concentrateur de Paris est capable de déterminer que
pour contribuer à l’établissement du circuit virtuel Lille–Nice il
faut envoyer les paquets en provenance de Lille et destinés à Nice
sur la ligne qui se dirige vers le concentrateur de Marseille, qui fera
suivre. Le concentrateur gardera en mémoire une table (dite table
de routage) qui associera un circuit virtuel Lille–Nice à un numéro
d’identification et à une sortie vers le concentrateur de Marseille.
Chaque paquet expédié sur ce circuit virtuel comportera comme
une étiquette le numéro d’identification de circuit virtuel qui per-
mettra au concentrateur de l’expédier dans la bonne direction.

L’ensemble de ces conventions — format et contenu des tables
de routage et des paquets, format des adresses (analogues à des nu-
méros de téléphone) qui identifient de façon unique chaque nœud et
chaque extrémité du réseau, procédure d’établissement du circuit
virtuel, structure de son numéro d’identification, règles d’achemi-
nement des paquets, procédure d’accusé de réception par laquelle
l’extrémité destination avertit l’extrémité origine de la bonne fin de
l’échange — constituent un protocole de communication, ici en l’oc-
currence le protocole X25, protocole de couche 3 pour les réseaux
à commutation de paquets par circuits virtuels.

Le progrès par rapport à la commutation de circuits est consi-
dérable : plusieurs circuits virtuels peuvent partager, pour une par-
tie de leurs trajets respectifs, la même infrastructure physique.
Les tronçons très fréquentés peuvent être équipés de lignes à plus
haut débit que ceux qui le sont moins. Les concentrateurs réalisent
l’adaptation de débit entre les liaisons de caractéristiques diffé-
rentes. Ce modèle a beaucoup plu aux opérateurs téléphoniques tra-
ditionnels parce qu’il permettait un mode de tarification conforme
à leurs habitudes : une fois le circuit virtuel établi, tous les paquets
empruntent le même itinéraire et il suffit de les compter dans un
concentrateur quelconque pour pouvoir facturer au bit près.

Nous allons voir mieux. Le modèle que nous venons de décrire
a des limites : l’établissement d’une communication exige que soit
constitué dès auparavant un circuit virtuel de bout en bout. Cela
ne pose pas de problème particulier au sein d’un réseau doté d’une
administration unique et centralisée, par exemple Transpac. Il est
à la rigueur concevable d’organiser une coordination entre quelques
grands opérateurs nationaux, conformément encore une fois au mo-
dèle familier à France Télécom et à ses homologues dans d’autres
pays, quoique l’expérience ait prouvé le caractère laborieux (et oné-
reux) d’une telle coordination. Mais nous allons voir un principe
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plus souple, celui de l’Internet, qui permet l’acheminement sûr des
communications parmi un univers de réseaux multiples au foison-
nement anarchique.

Commutation de paquets « pure »
Passons de la métaphore ferroviaire à la métaphore routière.

Soit une noce : la famille et les différents groupes d’invités doivent
se rendre au village où ont lieu la cérémonie et le banquet. Ils y
vont en voiture. Plusieurs groupes partent de la même ville, mais
ils ne tiennent pas tous dans la même voiture, alors ils voyagent
indépendamment. Tous ne prennent pas le même itinéraire, et les
premiers partis ne sont pas forcément les premiers arrivés. Certains
ont étudié la carte et déterminé un trajet jusqu’au village, mais
d’autres, plus insouciants, se fient aux panneaux indicateurs qu’ils
observent au bord de la route ou aux carrefours au fur et à mesure
de leur progression vers l’objectif, ce qui ne devrait pas les empêcher
d’arriver à bon port. Si la noce est très nombreuse elle peut saturer
l’autoroute, auquel cas les panneaux lumineux de type « bouchon à
5 km » viendront avertir les attardés qu’il vaut mieux prendre l’iti-
néraire de délestage, ce qui leur permettra éventuellement d’arriver
avant les premiers partis.

À l’arrivée au village il a été convenu de former un cortège, ce
qui suppose bien sûr un ordre protocolaire : d’abord la voiture de la
mariée, puis celle du marié, suivi de la belle-mère, etc. Évidemment
les voitures n’arrivent pas dans le bon ordre, et pour rester fidèle
à la tradition la mariée arrivera la dernière, aussi faudra-t-il une
manœuvre supplémentaire pour constituer le cortège dans le bon
ordre, ce qu’aurait évité un voyage par train spécial.

Le tableau que nous venons de dresser du départ et du regrou-
pement final de la noce figure assez fidèlement l’acheminement d’un
message de bonne taille par l’Internet conformément au protocole
IP (Internet Protocol). Chaque voiture représente un paquet, ap-
pelé aussi datagramme IP, ce qui insiste sur son caractère auto-
nome, par opposition au paquet X25, sagement rangé en file sur un
circuit virtuel. Le cortège nuptial des voitures remises dans le bon
ordre représente le message tel qu’il doit parvenir à destination.
Comme chaque paquet est acheminé indépendamment des autres,
par un itinéraire éventuellement différent, il ne suffit pas pour savoir
comment l’acheminer d’un numéro de circuit virtuel, donc chaque
paquet doit comporter son adresse d’origine et son adresse de des-
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tination. Le protocole IP définit un format d’adresse, et les orga-
nismes de coordination de l’Internet en assurent l’unicité à l’échelle
mondiale.

Aux nœuds du réseau se trouvent non plus des concentrateurs
X25, mais des ordinateurs spécialisés qui remplissent un rôle simi-
laire, même si sensiblement plus complexe, appelés routeurs. Fon-
damentalement, un routeur reçoit un paquet par une de ses lignes
de communication, analyse son adresse de destination, consulte ses
tables de routage, et en déduit sur quelle ligne il doit réexpédier le
paquet, ou s’il doit le rejeter.

À première vue, tout ceci semble moins rationnel et moins ef-
ficace que les circuits virtuels de X25. Mais c’est aussi considé-
rablement plus souple, en réalité plus efficace et plus simple, et
finalement ce modèle l’a emporté, pour des raisons que nous déve-
lopperons à la section 6.5.9 p. 215.

6.5.3 Le protocole IP et l’Internet
Le protocole IP correspond à la couche 3 du modèle OSI, la

couche réseau. La « pile » TCP/IP (comme une pile de couches...
empilées) n’obéit pas strictement à la nomenclature du modèle OSI :
elle comporte une couche liaison de données qui englobe les couches
1 et 2 de l’OSI, la couche IP (réseau) correspond à la couche 3 de
l’OSI, la couche TCP 8 (transport) correspond à la couche 4 de
l’OSI. La couche « applications » englobe tout ce qui relève des
couches hautes de l’OSI.

L’architecture de TCP/IP peut être vue sous l’angle suivant.
À partir d’un message émis par un utilisateur, chaque couche en
partant de la plus haute lui ajoute des en-têtes qui contiennent les
informations nécessaires à son fonctionnement, ce que montre la
figure 6.5.

Ainsi, un message électronique sera d’abord doté par votre logi-
ciel de courrier des en-têtes applicatives, en l’occurrence telles que
décrites par le RFC 822 (ce sont les lignes From:, To:, Subject:,
etc. que vous lisez en haut des messages). Puis ce message conforme
au RFC 822 se verra découpé en segments TCP, chacun doté de
l’en-tête convenable (décrite plus bas). Chaque segment TCP sera
empaqueté dans un datagramme IP qui possède lui aussi une en-

8 ... ou UDP, l’autre couche transport disponible au-dessus d’IP.
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Figure 6.5 – En-têtes des quatre couches de TCP/IP

tête. Et chaque datagramme sera expédié sur la couche liaison de
données qui correspond au support physique, Ethernet par exemple.

Le protocole réseau IP fournit à la couche transport un service
non fiable non connecté de datagrammes. Le terme datagramme
signifie que le flux de bits remis par la couche transport (TCP) est
découpé en paquets acheminés indépendamment les uns des autres.
Par non fiable nous entendons que la couche IP ne fournit aucune
garantie de remise des datagrammes ni aucun contrôle d’erreur, et
par non connecté nous entendons que la couche IP ne maintient au-
cune information d’état sur une transmission de données en cours,
et notamment qu’elle ne garantit pas la remise des datagrammes
dans l’ordre dans lequel ils ont été émis.

Ces caractéristiques sont de nature à inquiéter les néophytes,
et semblent curieuses, d’autant plus que la couche de liaison de
données fournit à la couche réseau, pour chaque segment physique
d’un chemin de données utilisé par un datagramme, un service fiable
de flux de bits remis dans le bon ordre.

En fait, la couche IP ne fournit pas de contrôle d’erreur parce
que de toute façon la couche TCP devra en effectuer, ainsi que la
vérification du bon ordre de remise des datagrammes au terminus
de la transmission, et que de tels contrôles au niveau de la couche
3 seraient redondants. Son ascétisme et sa désinvolture confèrent à
la couche IP la simplicité, la légèreté et la souplesse qui font son
efficacité. Mais avant d’en décrire plus précisément les principes
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techniques, il nous faut donner quelques informations sur l’organi-
sation du plus grand réseau IP : l’Internet.

Organisation administrative de l’Internet

Une chose que les néophytes ont souvent du mal à comprendre,
c’est que l’Internet ne soit la propriété de personne ni d’aucune
institution. Saisissons cette occasion de démentir la légende répé-
tée ad nauseam qui voudrait que l’Internet ait été inventé à la
demande des militaires américains selon un cahier des charges ré-
digé en vue de préserver une capacité de communication après une
frappe nucléaire. Il n’y a jamais rien eu qui ressemble de près ou
de loin à un « cahier des charges de l’Internet ». Cette thèse té-
lescope plusieurs événements liés mais distincts. Paul Baran, de la
firme RAND, contractant du DoD (Department of Defense), avait
posé les principes d’un tel système de communications dépourvu
de point de centralisation unique afin de maintenir certaines liai-
sons même si certains nœuds venaient à être détruits. Les travaux
de Baran furent publiés entre 1960 et 1964. Le même DoD, plu-
sieurs années plus tard, en 1969, a impulsé par son agence l’ARPA
(Advanced Research Projects Agency) la création du réseau ARPA-
NET, qui n’était pas destiné aux communications militaires mais à
faciliter la collaboration entre centres de recherches universitaires
et industriels sous contrat avec l’ARPA. BBN (Bolt, Beranek &
Newman) a été très impliqué dans le développement d’ARPANET,
où se retrouvent certaines idées de Paul Baran ; ce réseau fut un des
premiers (avec Cyclades en France, sous la direction de Louis Pou-
zin) à utiliser la technique de commutation de paquets. En 1976,
la clairvoyance de Vint Cerf et de Robert Kahn, le financement
de BBN et les contrats de l’ARPA devenue entre temps la DARPA
donnèrent naissance au protocole réseau de l’Internet, TCP/IP. Un
peu plus tard, en 1979, le groupe de recherche en système (Compu-
ter Systems Research Group, CSRG) de l’Université de Californie à
Berkeley allait incorporer TCP/IP à une nouvelle version de Unix,
dite BSD (Berkeley Software Distribution). Tous ces éléments mari-
naient dans une soupe originelle qui a donné naissance à l’Internet
à la fin des années 1970, quand les centres de recherche connectés
à ARPANET ont voulu communiquer avec les universités de leur
choix et que la NSF (National Science Foundation) a entrepris de
leur en donner les moyens.
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Le fonctionnement de l’Internet, à l’image de sa construction,
repose sur la coopération volontaire. Les décisions organisation-
nelles et techniques sont prises par des instances aux séances des-
quelles tout un chacun peut assister et participer.

— L’Internet Architecture Board (IAB) (IAB) est responsable
des grandes orientations et de la coordination.

— L’Internet Engineering Task Force (IETF) se charge de la
normalisation à court terme et émet les Requests for Com-
ments (RFC), qui sont les documents de référence pour le
fonctionnement du réseau. Citons ici le nom de Jon Postel,
éditeur des RFC depuis la première en 1969 jusqu’à sa mort
en 1998, et auteur ou coauteur de 204 d’entre elles, ce qui
lui a conféré une influence considérable sur la physionomie
du réseau. Toutes les RFC sont accessibles par l’URL (Uni-
versal Resource Locator) http://www.ietf.org/rfc/ ou sur de
nombreux sites miroirs. Nous ne saurions trop en conseiller
la lecture, même si leur qualité littéraire est inégale elles
fournissent sur l’Internet une information de première main,
souvent exposée très clairement, et dont la citation dans les
dîners en ville vous assurera une réputation de guru du ré-
seau.

— L’Internet Steering Group (IESG) coordonne l’IETF, dont
l’effectif est devenu très important.

— L’Internet Assigned Numbers Authority (IANA) centralise et
contrôle les conventions relatives à l’identification des objets
du réseau, et notamment veille à l’unicité des adresses.

— L’Internet Corporation for Assigned Names and Numbers
(ICANN) supervise l’attribution des noms de domaines et
des adresses.

Cette organisation coopérative ne signifie pas l’absence de rap-
ports de force marchands ou politiques, mais elle exclut (au moins
à court terme) la prise de contrôle par une entreprise unique.

Organisation topographique de l’Internet

La figure 6.6 donne une représentation schématique de la to-
pographie de l’Internet. Cette représentation est simplifiée, notam-
ment elle est purement arborescente, alors que rien n’empêche une
entreprise d’avoir plusieurs FAI, ni un FAI d’être connecté à plu-
sieurs centres d’interconnexion de niveau supérieur, ce qui com-
plique le schéma et le transforme d’un arbre en un graphe connexe

http://www.ietf.org/rfc/
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quelconque. L’essentiel dans l’établissement d’une communication,
c’est, à chaque nœud, de savoir quel est le prochain nœud sur l’iti-
néraire, et par quelle liaison l’atteindre. Les nœuds terminaux, ori-
gines ou destinations des communications, sont au sein des réseaux
locaux de campus ou d’entreprise. Les routeurs sont des nœuds
particuliers, dotés de plusieurs adresses réseau (une par interface
raccordée à une ligne de communication) et possédant des tables
de routage.

La figure 6.7 représente un gros plan sur un réseau local simple,
raccordé à l’Internet par un routeur, et constitué d’un unique seg-
ment de couche 2, en l’occurrence un réseau Ethernet.

La double ligne horizontale symbolise le bus, ou graphe connexe
complet, qui stipule qu’une trame émise par une des stations at-
teindra toutes les stations du réseau. Les réseaux Ethernet contem-
porains ont une topologie physique assez différente de ce schéma,
surtout s’ils utilisent les transmissions sans fil, mais ce schéma cor-
respond toujours bien à la structure logique de la communication.

routeur Un réseau local
sur un

campus

routeur Un réseau local
dans un

bâtiment

routeur du fournisseur d’accès

vers d’autres réseaux locaux

routeur d’un centre d’interconnexion

routeur d’un centre d’interconnexion

routeur d’un centre d’interconnexion

routeur du fournisseur d’accès

vers d’autres FAI

vers d’autres réseaux locaux

d’un client
d’un client

vers routeur
vers routeur

Figure 6.6 – Topographie de principe de l’Internet

Les stations ordinaires ont une seule interface réseau, et donc
une seule adresse de couche 2 et une seule adresse de couche 3
(dans les deux couches les adresses sont associées aux interfaces).
Dans notre exemple les adresses (de couche 3) des stations vont de
192.168.2.101 à 192.168.2.105. Le routeur, par définition, possède au

192.168.2.101
192.168.2.105
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moins deux interfaces et donc deux adresses, ici vers le réseau local
et vers le FAI et l’Internet. Dans notre exemple l’adresse intérieure
est 192.168.2.1 et l’adresse extérieure 171.64.68.22.

lien vers le réseau du FAI

192.168.2.101

192.168.2.102

192.168.2.103

192.168.2.104

192.168.2.105

192.168.2.1

171.64.68.22

routeur vers l’Internet

(fournisseur  d’accès)

��
��
��
��
�
�
�
�

�������������������
�
�
�

Figure 6.7 – Un réseau local simple

L’adresse et le datagramme IP

Comme nous l’avons vu plus haut, la couche réseau a sa propre
vision de la topologie du réseau, et partant son propre système
d’adressage.

Il faut tout d’abord rappeler que les adresses de couche 3,
comme celles de couche 2, sont attribuées aux interfaces et non
aux machines. Une machine qui a trois cartes réseau aura au moins
trois adresses ; à chaque interface peuvent correspondre plusieurs
adresses.

Comme nous allons le voir, l’adresse a deux fonctions : l’iden-
tification d’un nœud et sa localisation ; elle est en cela analogue
au numéro de téléphone. On aurait pu imaginer qu’il en soit au-
trement : notre numéro de sécurité sociale nous identifie sans nous
localiser, ce qui nous évite d’avoir à en changer à chaque déménage-
ment. Mais c’est ainsi et la nouvelle version du protocole IP, IPv6,
reste en gros fidèle à ce principe ; la dissociation de ces deux rôles de
l’adresse aurait des avantages indéniables pour les stations mobiles,

192.168.2.1
171.64.68.22
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de plus en plus nombreuses, et des recherches se poursuivent dans
cette direction.

Chaque adresse IP est unique 9 dans tout l’Internet, ce qui lui
permet d’assurer sa fonction d’identifiant. Quant à la fonction de
localisation elle est assurée par les mécanismes complexes du rou-
tage.

La façon dont une station (terme qui désigne un nœud vu du
point de vue de celui qui s’en sert) reçoit son adresse IP est variable.
L’ICANN distribue des tranches d’adresses à des organismes régio-
naux (pour l’Europe, c’est RIPE, pour Réseaux IP Européens), qui
les redistribuent à des organismes qui peuvent être nationaux (pour
la France c’est l’association AFNIC), qui eux-mêmes les attribuent
aux fournisseurs d’accès à l’Internet (FAI). Lorsqu’une entreprise
ou un particulier veut obtenir un accès à l’Internet, il s’adresse à
un FAI, qui lui attribue, selon l’importance de son réseau et de son
abonnement, une ou plusieurs adresses IP. En général, les particu-
liers n’ont pas besoin d’une adresse fixe permanente : lorsqu’ils al-
lument leur ordinateur et leur modem, le routeur du FAI le détecte
et leur envoie une adresse temporaire, affectée dynamiquement à
partir d’un pool d’adresses, qui servira le temps de la session de
travail. Cette adresse peut d’ailleurs être privée (voir plus haut).

Depuis une dizaine d’années, IP est en pleine transition : les
adresses couramment utilisées sont celles d’IP version 4 (spécifié par
le RFC 791 de septembre 1981), qui comportent 32 chiffres binaires
(bits), ce qui autoriserait théoriquement un maximum de 4 milliards
de nœuds, en fait moins, à cause de la structure de l’adresse. Cette
valeur qui semblait astronomique dans les années 1970 est en passe
d’être atteinte par le développement de l’Internet. Les organismes
qui coordonnent l’Internet ont défini une nouvelle version du proto-
cole, IP version 6, et sont en train de planifier son déploiement, ce

9 Il y a une exception à l’unicité des adresses IP : sur un réseau connecté à
l’Internet, on peut décider que certaines machines ne seront pas « visibles »
de l’extérieur, c’est-à-dire qu’elles ne pourront pas être directement atteintes
par une communication en provenance de l’Internet. Les communications
qu’elles entameront se feront par l’intermédiaire d’un routeur qui, lui, sera
« visible ». Ces machines non visibles pourront recevoir des adresses dites
privées, selon le RFC 1918, pour lesquelles la contrainte d’unicité sera limitée
au réseau local considéré. Le moyen par lequel elles communiquent avec
l’Internet, que nous décrirons plus en détail un peu plus loin (cf. section 6.5.4
p. 189), repose sur une traduction d’adresse (NAT, pour Network Address
Translation) effectuée par le routeur.
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qui ne sera pas une mince affaire. L’adresse IPv6 comporte 128 bits.
Cette nouvelle version du protocole apporte d’autres innovations,
dans le domaine de la sécurité et dans celui de l’auto-configuration
des nœuds qui rejoignent le réseau notamment.

L’adresse IPv4 est structurée en deux parties : les chiffres les
plus significatifs désignent le numéro de réseau, ou adresse de ré-
seau, les moins significatifs l’adresse locale, qui identifie une inter-
face d’un nœud dans le réseau (une machine peut avoir plusieurs in-
terfaces, et donc plusieurs adresses). Il existait naguère trois classes
de réseaux, distinguées par le nombre de bits réservés à l’adresse de
réseau et à l’adresse locale respectivement. Ce partage de l’espace
adresse en classes ne s’est pas avéré très judicieux avec la montée
de la pénurie mondiale d’adresses et il est partiellement abandonné
aujourd’hui au profit d’une notation plus souple, qui permet de spé-
cifier ad libitum le nombre de bits destinés à identifier le réseau, et
ceux qui restent disponibles pour identifier les nœuds. IPv6 offre
plus de souplesse dans la gestion des adresses, en tenant compte
de phénomènes inconnus lors de la spécification d’IPv4, comme le
rôle des fournisseurs d’accès à l’Internet (FAI), la mobilité et le
nomadisme.

Écrire un nombre binaire de 32 chiffres est malcommode ; pour
représenter une adresse IP on utilise la convention suivante : elle
est découpée en quatre nombres de huit bits (octets), et on écrit
ces nombres en notation décimale, séparés les uns des autres par
un point. Voici une adresse représentée de la sorte : 171.64.68.20.
Pour préciser la forme des adresses IPv4 donnée à l’alinéa précé-
dent, le RFC 791 distinguait des adresses de classe A, avec le pre-
mier bit à 0, 7 bits pour l’adresse de réseau (le premier octet est un
nombre inférieur à 128) et 24 bits pour l’adresse locale (interface
d’un nœud) ; des adresses de classe B avec le premier bit à 1, le
deuxième bit à zéro (le premier octet est un nombre compris entre
128 et 191 inclus), 14 bits pour l’adresse de réseau et 16 bits pour
l’adresse locale ; les adresses de classe C avec les deux premiers bits
à 1 et le troisième bit à 0 (le premier octet est un nombre supérieur
à 191 et inférieur à 224), 21 bits pour l’adresse de réseau et 8 bits
pour l’adresse locale.

Actuellement ce système assez rigide est contourné et les classes
sont de fait abolies par le système CIDR (Classless Interdomain
Routing), qui instaure une situation hiérarchique plus simple où, à
une feuille de l’arborescence, l’administrateur d’un réseau local fixe
les quelques bits les plus à droite de l’adresse d’une interface, puis



Couche 3, réseau 187

32 bits
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somme de contrôle

vers.

Figure 6.8 – Datagramme (ou paquet) IPv4

le FAI régional fixe quelques bits un peu plus à gauche, puis un
organisme national encore quelques bits supplémentaires, et ainsi
de suite jusqu’à l’ICANN qui distribue les bits de gauche à toute la
planète, tout ceci en essayant de s’organiser pour que des machines
topologiquement proches les unes des autres aient le plus de bits
de gauche en commun afin de simplifier et d’abréger les tables de
routage. Mais comme le RFC 791 est toujours en vigueur et que la
plupart des adresses que vous rencontrerez au cours des prochaines
années lui obéiront, autant comprendre cette syntaxe curieuse.

La partie « adresse de réseau » de l’adresse joue le rôle de pré-
fixe : ainsi, dans un réseau local de campus ou d’immeuble tel que re-
présenté par la figure 6.7, tous les nœuds du réseau ont le même pré-
fixe, qui caractérise le réseau. Dans notre cas, l’adresse de réseau est
192.168.2, ce qui incidemment est un préfixe d’adresse réservé aux
réseaux privés, non visibles de l’Internet. À l’intérieur du réseau, les
nœuds sont distingués par le suffixe de leur adresse. De l’extérieur
du réseau, pour envoyer un message à un de ses nœuds, il suffit
de l’envoyer à l’adresse extérieure du routeur d’entrée (dans notre
exemple 172.64.68.22), ce routeur détiendra l’information propre à
acheminer le message à la bonne adresse. Quand une machine du

192.168.2
172.64.68.22
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réseau souhaite expédier un datagramme à une machine extérieure,
elle l’envoie à l’adresse intérieure du routeur (192.168.2.1), qui joue
le rôle de passerelle de sortie et qui sait (nous allons bientôt le savoir
nous aussi) comment le faire parvenir à destination.

Pour donner une meilleure vision du datagramme (ou paquet)
IPv4, la figure 6.8 en donne le diagramme complet. Le champ « pro-
tocole supérieur » permet de connaître la nature des données, en gé-
néral soit un segment TCP, soit un segment UDP. Les informations
de la seconde ligne (identifiant, flags, position du fragment) servent
dans le cas suivant : tous les segments d’un itinéraire dans un ré-
seau n’ont pas forcément les mêmes caractéristiques techniques, et
notamment certains peuvent n’accepter qu’une taille maximum de
paquet inférieure à la taille fournie par le nœud précédent, ce qui
oblige le routeur à fragmenter le paquet, qui devra bien sûr être
réassemblé à un moment ou à un autre, grâce à ces informations.
Cette possibilité de fragmentation est un dispositif souvent utilisé
par les pirates pour leurrer les logiciels de sécurité qui analysent les
paquets de données, parce que les algorithmes de fragmentation et
de réassemblage sont compliqués et donc souvent mal réalisés par
certains fournisseurs.

Le paquet IPv4 comporte beaucoup d’informations en fait in-
utiles et parfois gênantes, en particulier la somme de contrôle qui
doit être recalculée chaque fois que l’en-tête du paquet est modifié
(elle ne contrôle l’intégrité que de l’en-tête). Le paquet IPv6 est
beaucoup plus simple, comme en témoigne la figure 6.9.

L’adresse IPv6, de 128 bits donc, est notée de la façon suivante :
elle est découpée en tranches de 16 bits, représentée chacune par
quatre chiffres hexadécimaux, les tranches séparées les unes des
autres par le signe « : », ainsi :

0123:4567:89ab:cdef:0123:4567:89ab:cdef

Il y a des règles assez subtiles pour abréger cette représentation
lorsqu’elle comporte de longues suites de bits à zéro, dont l’exposé
ne nous semble pas indispensable, sachant que le lecteur curieux
en trouvera le détail dans le RFC 2373 (http://www.ietf.org/rfc/
rfc2373.txt).

IPv6 introduit d’autres modifications dans le traitement des
adresses : si une adresse est toujours attribuée à une interface (plu-
tôt qu’à un nœud), cette attribution est temporaire et les adresses
sont réputées changer. Les chiffres les moins significatifs de l’adresse

192.168.2.1
http://www.ietf.org/rfc/rfc2373.txt
http://www.ietf.org/rfc/rfc2373.txt
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32 bits
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     le protocole de couche supérieure pour les
     données.

Figure 6.9 – Datagramme (ou paquet) IPv6

IPv6 sont calculés à partir de l’adresse de couche 2 (MAC) lorsqu’il
y en a une.

6.5.4 Exception à l’unicité des adresses : traduction
d’adresses (NAT)

Le principe du standard téléphonique d’hôtel

Le système de traduction d’adresses 10 NAT (Network Address
Translation) est apparu en 1994 dans le RFC 1631 (remplacé main-
tenant par le 3022), initialement pour permettre la communication
entre l’Internet et des réseaux privés contenant des adresses IP non
conformes au plan d’adressage de l’Internet, et il a été ensuite très
largement utilisé pour pallier le déficit d’adresses IP engendré par

10 Incidemment, l’anglais translation se traduit ici en français par traduction,
translation d’adresse ne veut rien dire et celui qui employe cette locution
prouve simplement qu’il connaît mal l’anglais et le français et qu’en outre il
ne connaît guère le processus qu’il décrit.
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l’étroitesse de la plage d’adresses de la version 4 du protocole. Il est
devenu de ce fait à la fois une solution et un problème de sécurité
des réseaux.

Le principe en est le suivant : chaque nœud de l’Internet doit
posséder une adresse IP pour mettre en œuvre le protocole TCP/IP,
et cette adresse doit être unique, comme pour les numéros de télé-
phone, sinon il serait impossible d’acheminer correctement les com-
munications.

Routeur

Identité

1000
addresses

Routeur
central

193.48.103.0/24

193.48.102.0/24

193.48.101.0/24

193.48.100.0/24

Sous-réseaux

Figure 6.10 – Réseau sans NAT : les adresses des hôtes sont des adresses uniques
et routées sur Internet.

Mais, pour poursuivre la comparaison avec le téléphone, dans
un hôtel par exemple, seul le standard a un numéro de téléphone
unique, et le poste de chaque chambre a un numéro local, à usage
strictement interne, et qui peut très bien être le même que celui
d’une chambre dans un autre hôtel : cela n’a aucune conséquence
fâcheuse parce que le numéro de la chambre n’est pas visible de
l’extérieur ; ceci permet parfaitement à l’occupant de la chambre
d’appeler l’extérieur en donnant un code particulier (« composer le
0 pour avoir l’extérieur »), et de recevoir des communications en
passant par le standard qui effectue la commutation vers la ligne
de la chambre.
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Adresses non routables

Le système NAT repose sur un principe analogue : dans un ré-
seau local, seuls les serveurs qui ont vocation à abriter des serveurs
vus de tout l’Internet, comme le serveur WWW de l’entreprise ou
sa passerelle de messagerie, doivent recevoir des adresses reconnues
universellement, et donc uniques et conformes au plan d’adressage
de l’Internet. Les postes de travail ordinaires peuvent recevoir des
adresses purement locales, qui ne sont pas routables, c’est-à-dire
qu’un paquet à destination d’une telle adresse peut circuler sur
le réseau local et atteindre sa destination, mais ne peut pas fran-
chir un routeur, parce que ces classes d’adresses sont explicitement
désignées pour que les routeurs les oublient. Sont dites non rou-
tables toutes les adresses appartenant aux blocs d’adresses définis
à cet effet par le RFC 1918 : 192.168.0.0 à 192.168.255.255 (pré-
fixe 192.168/16), 172.16.0.0 à 172.31.255.255 (préfixe 172.16/12) et
10.0.0.0 à 10.255.255.255(préfixe 10/8).

Accéder à l’Internet sans adresse routable

Si la gestion des adresses non routables s’arrêtait là, ces mal-
heureux ordinateurs dotés d’adresses de seconde zone ne pourraient
jamais naviguer sur l’Internet : en effet, une communication aussi
simple que l’accès à un serveur Web demande que les paquets com-
portent une adresse source et une adresse destination valides, ne
serait-ce que pour que le serveur puisse renvoyer au client le contenu
de la page qu’il a voulu consulter. D’ailleurs dans un réseau fermé
sans connexion à l’Internet les possibilités de communication sont
limitées au réseau local, et c’est pour de tels réseaux qu’avaient été
créées à l’origine les classes d’adresses non routables, que NAT a
ensuite astucieusement détournées de leur destination, si j’ose dire.

Sur un réseau connecté à l’Internet qui ne contient que des
postes de travail dotés d’adresses non routables, il y a au moins un
nœud qui possède une adresse routable, c’est le routeur d’entrée
du réseau, puisque justement il est connecté. Alors il y a au moins
un moyen de faire communiquer un poste du réseau local avec l’ex-
térieur : il faut pour cela que le routeur soit doté de la capacité
de traduction d’adresses, justement ; ainsi il pourra jouer vis-à-vis
des nœuds du réseau local le même rôle que le standard de l’hô-
tel vis-à-vis des postes téléphoniques des chambres, en « passant
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Routeur NAT

NAT de 10/8 vers
193.48.100/24 et
193.48.101/24

255
addresses

10.104/16

10.103/16

10.102/16

10.101/16

Routeur
central

Sous-réseaux

Figure 6.11 – Réseau avec NAT : les adresses des hôtes sont des adresses
réutilisables. Le routeur d’entrée fait la traduction d’adresse. On notera que la

modification du plan d’adressage alloue désormais un réseau /16 par sous-réseau,
s’affranchissant de la limite des 254 adresses possibles avec un /24.

les communications ». Le principe de NAT est de remplacer une
adresse interne non routable par une adresse routable.

Réalisations

La façon la plus simple de réaliser la traduction d’adresse est
la méthode statique : à chaque adresse interne non routable on fait
correspondre, bijectivement, une adresse routable qui la remplace.
Le routeur contient la table de correspondance et fait la traduction,
sans autre forme de procès.

La traduction d’adresse statique est simple, mais dans l’univers
de la fin des années 1990 la pénurie des adresses IP (la version 4
du protocole IP comporte des adresses sur 32 chiffres binaires, ce
qui autorise un maximum de 4 294 967 295 adresses uniques, mais
en fait un peu moins compte tenu des contraintes sur la structure
de ces adresses) a conduit vers d’autres réalisations, notamment
la traduction d’adresses dite dynamique, et plus particulièrement
vers une de ces méthodes dynamiques, dite IP masquerading (mas-
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PAT de 10/8 vers
l'addresse du routeur

Routeur PAT

1
addresse

10.104/16

10.103/16

10.102/16

10.101/16

Routeur
central

Sous-réseaux

Figure 6.12 – Réseau avec NAT et masquage d’adresse IP : seule l’adresse de
l’interface externe du routeur est utilisée ; le multiplexage/démultiplexage des

adresses IP internes se fait grâce aux numéros de ports (modifiés par le routeur).

quage d’adresse IP), aujourd’hui prédominante et que nous allons
décrire bièvement (pour plus de détails et de références, cf. Wiki-
pédia [135]). Avec NAT et le masquage d’adresse IP, seul le routeur
possède une adresse routable, toutes les communications des nœuds
internes sont vues de l’extérieur comme issues de cette adresse ou
destinées à elle, et le tri est fait par le routeur au moyen d’une ma-
nipulation des numéros de port, de façon tout à fait analogue au
travail du standardiste de l’hôtel que nous évoquions ci-dessus.

En anticipant sur la section suivante, disons qu’une connexion
TCP est identifiée par la quadruplet {adresse IP de destination, nu-
méro de port de destination, adresse IP d’origine, numéro de port
d’origine} 11. En général, dans le paquet qui initie la connexion, le
numéro de port de destination obéit à une convention (par exemple

11 En précisant qu’un port (en français sabord, orifice destiné à laisser passer un
flux) dans la terminologie TCP/IP est un numéro conventionnel qui, associé
à une adresse IP, identifie une extrémité de connexion, ou en termes plus
techniques une socket, que l’on pourrait traduire par prise. Par convention
certains numéros de ports sont réservés aux serveurs de certains protocoles ;
ainsi le port 80 est réservé au protocole HTTP (WWW), le port 25 à SMTP
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80 pour l’accès à un serveur Web), et le numéro de port d’origine est
quelconque, supérieur à 1024, et choisi de façon à former un couple
unique avec l’adresse d’origine. Lorsque le routeur recevra un tel
paquet, où l’adresse d’origine sera une adresse NAT non routable,
il remplacera cette adresse par sa propre adresse, éventuellement
il remplacera le numéro de port d’origine par un autre, s’il a déjà
utilisé ce couple { adresse, numéro de port} pour une autre tra-
duction, et il conservera dans une table la correspondance entre ce
couple {adresse, port} envoyé sur l’Internet et celui du poste émet-
teur, ce qui permettra, au prix donc d’une traduction, d’acheminer
les paquets dans les deux sens.

6.5.5 Une solution, quelques problèmes
À première vue, NAT est une solution de sécurité : avec un tel

procédé et le masquage d’adresse IP, les adresses des nœuds du
réseau interne, qui sont en général les postes de travail des utilisa-
teurs, ne sont pas visibles de l’extérieur, ils sont donc hors d’atteinte
de connexions établies par des malfaisants, et de fait il n’y a en géné-
ral aucune raison valable pour qu’une connexion soit établie depuis
l’extérieur vers un poste de travail individuel ; si tel devait être le
cas cela devrait être fait selon une méthode de traduction explicite,
par exemple pour permettre la prise de contrôle à distance dans
un contexte d’assistance technique ou d’administration du système
(mise à jour d’anti-virus, etc.).

(courrier électronique), les ports no 137, 138 et 139 au protocole de par-
tage de fichiers Netbios, c’est-à-dire qu’un serveur Netbios sera en écoute
sur le réseau et attendra des tentatives de connexion sur ces numéros de
port, cependant que les clients Netbios essaieront de s’y connecter. À l’ex-
trémité côté client, le numéro de port est quelconque, en général supérieur à
1024, et choisi de façon à former un couple unique avec l’adresse d’origine.
Incidemment, il est possible, lors de l’initiation d’une connexion réseau, de
déterminer un tel couple {adresse,port}, nommé socket, doté de la propriété
d’unicité, parce que ce n’est pas le logiciel client qui établit la connexion,
mais le noyau du système d’exploitation, du moins dans les systèmes sérieux.
La connexion est ainsi identifiée de façon unique par le quadruplet {adresse
IP d’origine, port d’origine, adresse IP de destination, port de destination}.
Cette abstraction permet à un nœud unique du réseau d’être simultanément
serveur pour plusieurs protocoles, et également d’être à la fois serveur et
client. Les pirates recherchent activement sur l’Internet les machines acces-
sibles qui laissent ouverts des ports de protocoles réputés vulnérables pour
essayer de compromettre le serveur à l’écoute.
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Cette protection du réseau privé par NAT est réelle et ne doit
pas être sous-estimée. Il convient cependant d’avoir conscience du
fait qu’avec la version 6 du protocole TCP/IP NAT va probable-
ment disparaître, au moins sous sa forme actuelle, et avec lui les
politiques de sécurité qui reposeraient trop exclusivement sur ses
caractéristiques contingentes.

NAT pose des problèmes aux protocoles qui transportent des
adresses IP et des numéros de port dans la partie « données » de
leurs paquets. De tels protocoles sont dits « sales », parce qu’ils
ne respectent pas le modèle d’abstraction en couches, et qu’ils
transportent de l’information de niveau protocolaire (adresses) sous
forme de données quelconques. Le type même du protocole sale est
H323, utilisé pour la téléphonie sur IP et la visio-conférence.

NAT pose aussi des problèmes à IPSec, parce que NAT modifie
les adresses et les numéros de ports, donc modifie les paquets, ce
qui, du moins en IPv4, oblige à recalculer la somme de contrôle qui
y figure (IPv6 supprime cette contrainte).

Dans un réseau qui met en œuvre NAT, le masquage d’adresse
IP et les adresses non routables du RFC 1918 (cf. ci-dessus 6.5.4), ce
qui est très répandu, notamment avec les petits routeurs ADSL que
chacun installe maintenant à son domicile, les adresses sont généra-
lement affectées de façon dynamique par un protocole conçu à cet
effet, DHCP (Dynamic Host Configuration Protocol). Ce protocole
n’est pas exempt de critiques du point de vue de la sécurité, notam-
ment parce qu’il émet des diffusions générales à la cantonade sans
que ce soit toujours nécessaire, et aussi parce qu’il n’est pas pro-
tégé contre les usurpations d’identité : je monte un serveur DHCP
pirate, j’alloue aux clients naïfs des adresses que je contrôle, je fais
croire au service de noms local que les communications à destina-
tion de ces adresses doivent m’être envoyées, et ainsi j’intercepte
des communications qui ne me sont pas destinées.

6.5.6 Traduction de noms en adresses : le DNS
Depuis quelques paragraphes nous parlons d’expédier des da-

tagrammes à des adresses ici ou là, mais nous, utilisateurs de
l’Internet, comment connaissons-nous les adresses des machines
avec lesquelles nous voulons communiquer ? Ce que nous voulons
faire, le plus souvent, c’est envoyer un courrier électronique à
France.Gall@freesurf.fr, ou consulter le serveur http://www.sncf.fr
pour connaître l’horaire du train pour la rejoindre. www.sncf.fr n’est

France.Gall@freesurf.fr
http://www.sncf.fr
www.sncf.fr
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pas une adresse, mais un nom qui désigne la machine qui abrite le
serveur désiré. freesurf.fr n’est pas une adresse mais un nom qui
désigne un domaine au sein duquel se trouvera une machine nom-
mée par exemple mail.freesurf.fr, qui abritera le serveur de courrier
électronique qui détient la boîte aux lettres électronique de France
Gall (n’essayez pas, cette adresse est fictive). Mais la couche réseau
IP n’a que faire des noms, elle ne connaît que des adresses.

Incidemment, avant même de résoudre cette embarrassante af-
faire de noms et d’adresses, ce que nous voulons envoyer ce ne sont
pas des datagrammes IP, mais des courriers électroniques ou des
interrogations au serveur. Mais là, la réponse est aisée. Notre lo-
giciel de courrier électronique donnera à notre message la mise en
forme convenable (définie par un RFC fameux entre tous, le RFC
822), puis le transmettra à un logiciel serveur de messagerie (couche
application) conforme au protocole de transport de courrier électro-
nique SMTP (Simple Mail Transfer Protocol) tel que Sendmail ou
Postfix, qui s’occupera de déterminer comment atteindre le destina-
taire, et transférera toutes les informations et données nécessaires
au protocole de transport TCP (couche 4 de l’OSI), qui lui-même
entamera les manœuvres nécessaires en envoyant des flux de bits
à la couche IP (couche 3 de l’OSI), qui découpera tout cela en da-
tagrammes avec les bonnes données et les bonnes adresses, et les
enverra à la couche liaison de données (couche 2 de l’OSI).

Revenons maintenant à la question initiale, nous connaissons
le nom d’un serveur (de courrier électronique, WWW, etc.) et ce
qu’il faut à la couche IP c’est son adresse. Dans la vie courante,
pour répondre à ce genre de question il y a des annuaires, eh bien
sur l’Internet c’est la même chose. L’annuaire qui permet, si l’on
connaît le nom d’un serveur, de trouver son adresse, et vice-versa,
s’appelle le DNS (Domain Name System). C’est une immense base
de données distribuée sur l’ensemble de la planète, peut-être la plus
grande qui existe. Ce processus de résolution de noms en adresses
est complété par un autre service, qui publie les noms des serveurs
de courrier électronique qui desservent un domaine. Mais qu’est-ce
qu’un domaine ?

L’espace des noms de l’Internet (il est important de garder à
l’esprit que les schémas qui vont suivre décrivent un espace abstrait
de noms de serveurs et de domaines, et pas la topologie du réseau
physique qui les relie) est organisé de façon hiérarchique, selon un
schéma calqué sur l’organisation du système de fichiers Unix que
nous avons vu à la section 5.2.1 illustré par la figure 5.6. Ce système

freesurf.fr
mail.freesurf.fr
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génial, dont le fonctionnement n’est pas très intuitif, a été gravé
dans le marbre des RFC 1034 et 1035 par Paul Mockapetris, actuel
président de l’IAB.

racine sans
nom

markettechsales

com edu org netarpa

ibm intelin−addr inserm inria cnam surcouf

rocqsophianancy

fr ca be

eva louise asja vera salome electre

grenoble

(alias « www ») (alias « www ») (alias « ftp ») (alias « dns »)

Figure 6.13 – Organisation en arbre des noms de domaine

La figure 6.13 montre l’organisation hiérarchique de l’espace
de noms de l’Internet. Chaque nœud de l’arbre, représenté par un
cercle, comprend un label, qui peut avoir jusqu’à 63 caractères de
long, et pour lequel les lettres minuscules et majuscules ne sont pas
distinguées. Le nom de domaine d’un nœud s’obtient en construi-
sant la séquence de tous les labels des nœuds compris entre le nœud
considéré et la racine inclus, séparés par des points, comme par
exemple vera.sophia.inria.fr.

Sous une racine sans nom se trouvent un certain nombre de do-
maines de premier niveau (TLD, pour Top Level Domains). Chaque
entreprise, association, université ou autre entité désireuse d’accé-
der à l’Internet appartiendra à un de ces domaines. Ceux qui ont
des noms à trois lettres sont dits domaines génériques : com, edu,
net, gov, respectivement pour les activités commerciales, éduca-
tives, liées au réseau ou rattachées au gouvernement américain. Les
TLD à deux lettres sont des domaines géographiques : fr, ca, be,

vera.sophia.inria.fr
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de, dz respectivement pour la France, le Canada, la Belgique, l’Al-
lemagne et l’Algérie. Le domaine arpa a un rôle particulier, il sert
à la résolution inverse, c’est-à-dire à la traduction des adresses en
noms.

Au niveau inférieur, au sein du TLD, on trouve généralement
les domaines qui correspondent aux universités, entreprises, etc.
qui se sont connectées à l’Internet. Elles ont choisi elles-mêmes
leur nom de domaine, avec la contrainte que le nom complet doit
être unique : il ne peut y avoir qu’un domaine inria.fr, mais il
peut y avoir ibm.com, ibm.fr, ibm.be, etc. Ces domaines peuvent
être eux-mêmes subdivisés : ainsi Inria (Institut National de la Re-
cherche en Informatique et en Automatique) aura sans doute un
domaine pour chacune de ses unités de recherche, Rocquencourt,
Sophia-Antipolis, Nancy, Grenoble, etc., qui s’appelleront peut-être
sophia.inria.fr, nancy.inria.fr, grenoble.inria.fr, etc.

Cette subdivision peut atteindre des niveaux encore plus fins,
mais nous allons supposer qu’Inria en est resté là, et qu’au sein
du domaine sophia.inria.fr au niveau juste inférieur se trouvent
les noms des nœuds du réseau, qui sont des stations ou des ser-
veurs auxquels leurs utilisateurs ont donné les noms asja, vera,
salome, electre. Leurs noms complets, uniques pour tout l’Inter-
net et auxquels le DNS aura pour mission de faire correspondre
leur adresse IP, seront asja.sophia.inria.fr, vera.sophia.inria.fr,
salome.sophia.inria.fr, electre.sophia.inria.fr.

Une station sur le réseau peut avoir, outre son nom propre tel
que nous venons de le voir, un ou plusieurs alias. Ainsi il est de
coutume que le serveur Web d’un organisme soit connu sous le
nom www.quelquechose.fr. Alors si le serveur Web d’Inria Sophia est
hébergé sur la machine asja, celle-ci recevra un alias, www.sophia.
inria.fr. Les deux noms désigneront la même machine, ou plus
exactement la même interface sur le réseau.

Il serait possible d’imaginer une administration centralisée de
l’arbre des domaines, mais une fraction de seconde de réflexion ré-
vélerait l’immensité des difficultés qui en résulteraient. Aussi cet
arbre est-il découpé en sous-arbres appelés zones, administrées sé-
parément. Ainsi en France l’association AFNIC administre-t-elle
tous les domaines dont le nom se termine par .fr : on dit que
l’AFNIC a reçu délégation pour la zone fr. De même l’AFNIC dé-
léguera l’administration de la zone inria.fr à Inria, qui lui-même
déléguera à une équipe de son unité de Sophia-Antipolis l’adminis-
tration de sophia.inria.fr.

sophia.inria.fr
nancy.inria.fr
grenoble.inria.fr
sophia.inria.fr
asja
vera
salome
electre
asja.sophia.inria.fr
vera.sophia.inria.fr
salome.sophia.inria.fr
electre.sophia.inria.fr
www.quelquechose.fr
www.sophia.inria.fr
www.sophia.inria.fr
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Dès lors qu’un organisme a reçu délégation de l’administration
d’une zone, il a le devoir de mettre en service des serveurs de
noms pour cette zone, au moins deux, un primaire et un secon-
daire 12. Un serveur de noms est un logiciel que l’on peut interro-
ger : si on lui fournit le nom d’une machine il renvoie son adresse,
et vice-versa. Dès qu’un nouvel ordinateur est mis en service dans
une zone, l’administrateur du DNS de cette zone doit lui affecter un
nom et une adresse et les ajouter à la base de données du serveur
de noms primaire local. On dit que ce serveur de noms a l’autorité
sur la zone.

Un serveur primaire obtient les informations relatives à sa zone
en accédant directement les bases de données locales. Un serveur
secondaire (il peut y en avoir plusieurs, et il est recommandé qu’ils
soient physiquement distincts et redondants) obtient ces mêmes in-
formations en les demandant au serveur primaire. L’opération par
laquelle un serveur secondaire reçoit du serveur primaire l’informa-
tion qui décrit la zone est nommée transfert de zone. La pratique
courante est de demander à un collègue sur un autre site d’être se-
condaire pour votre zone, à charge de revanche.

Donc tout système installé dans la zone, lorsqu’il voudra tra-
duire un nom en adresse, posera la question au serveur de la zone.
Plus précisément, le logiciel d’application qui a besoin de l’adresse
(par exemple votre navigateur WWW ou le logiciel de transfert de
courrier électronique) fait appel à un résolveur, qui va dialoguer
avec le serveur de noms qui lui aura été désigné.

Si le nom à traduire désigne une machine locale, le serveur in-
terrogera directement sa base. Sinon, il doit interroger un autre
serveur de noms, qui, lui, connaîtra la réponse. Comment trouver
un tel serveur de noms, en possession de la réponse à la question
posée ? Chaque serveur connaît (il en possède les adresses dans sa
base de données) la liste des serveurs de noms racines, à ce jour
au nombre de treize, dispersés à la surface de la planète, surtout
aux États-Unis qui en abritent dix, et en fait recopiés à des cen-
taines d’exemplaires jusqu’au fond des steppes d’Asie centrale 13.
Ces serveurs racines détiennent la liste des serveurs de noms qui

12 Selon la règle plus récente il faudrait dire « maître » plutôt que primaire
et « esclave » plutôt que secondaire, mais cette terminologie m’écorche la
bouche.

13 Cf. http://www.root-servers.org/

http://www.root-servers.org/
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détiennent l’autorité pour tous les domaines de second niveau (dans
notre schéma de la figure 6.13, la ligne ibm.com, inria.fr, etc.).

Notre serveur va donc interroger un serveur racine. Celui-ci ré-
pondra en donnant l’adresse du serveur qui détient l’information
autorisée relative au domaine de second niveau dont relève le nom
de domaine que nous cherchons à résoudre ; ce troisième serveur,
interrogé, donnera soit la réponse, soit l’adresse d’un quatrième
serveur plus proche du domaine concerné, etc. Le serveur interrogé
initialement peut soit transmettre la première réponse au résolveur,
charge à ce dernier d’interroger le serveur de noms suivant, et ainsi
de suite : une telle interrogation est dite itérative. Le résolveur peut
au contraire demander au serveur de faire son affaire des interroga-
tions des autres serveurs de noms impliqués, une telle interrogation
sera dite récursive.

Toute cette subtile conversation entre serveurs sera bien sûr
ignorée de l’utilisateur. Les logiciels de courrier électronique ou de
navigation sur le WWW savent faire appel au résolveur. Lorsqu’un
abonné individuel à l’Internet allume son modem, la plupart du
temps le routeur de son FAI lui envoie, grâce au protocole DHCP
(Dynamic Host Configuration Protocol), en même temps que son
adresse IP dynamique, l’adresse du ou des serveurs de noms aux-
quels le résolveur pourra s’adresser. Mais ainsi vous saurez à quoi
correspond la case la plus perturbante du menu de configuration de
votre accès au réseau : celle où on vous demande l’adresse de votre
serveur DNS. Heureusement vous n’aurez presque plus jamais à la
remplir.

6.5.7 Mécanisme de la couche IP
Nous allons maintenant étudier la façon dont des datagrammes

IP qui contribuent à l’acheminement d’un message quelconque at-
teignent leur destination. Ce transfert de données a pour origine
un ordinateur raccordé au réseau, évidemment. Le principe de la
couche réseau IP consiste, à chaque nœud du réseau traversé, à dé-
terminer le prochain nœud à atteindre, et plus concrètement sur
quelle interface réseau émettre le datagramme. S’il n’y a qu’une
interface réseau active, la décision est très simple, comme on peut
l’imaginer. Par convention, la couche IP considère aussi une inter-
face dite « locale », qui n’a pas d’existence physique et qui permet
à un nœud de s’atteindre lui-même, cas trivial mais qu’il ne faut
pas oublier de traiter.
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Sur le nœud émetteur, le rôle de la couche IP est le suivant :
— recevoir un flux de bits de la couche TCP (transport) ; TCP

découpe ce flux en morceaux de taille raisonnable appelés
segments ;

— mettre chaque segment dans un datagramme (ou exception-
nellement plusieurs) ;

— déterminer l’interface réseau appropriée pour atteindre
l’adresse de destination ;

— munir le datagramme d’une en-tête qui comporte les infor-
mations nécessaires à son acheminement, c’est-à-dire essen-
tiellement, en ce qui relève de nos préoccupations du mo-
ment, l’adresse IP de l’interface émettrice et l’adresse IP du
destinataire ;

— remettre le datagramme à la couche liaison de données atta-
chée à la bonne interface, avec si nous sommes sur un réseau
local la bonne adresse de couche 2 (MAC).

Effectuer ces opérations, et notamment les trois dernières, c’est
déterminer l’itinéraire (en anglais route) que doit emprunter le da-
tagramme, soit par extension de langage effectuer le routage de ce
datagramme.

Chaque station connectée à un réseau IP possède une table
de routage, qui contient deux types d’informations : des adresses
de réseaux et le moyen de les atteindre. Pour une simple station
« feuille » du réseau, le nombre de cas possibles est limité :

— dans le cas d’un réseau auquel la station est directement
connectée, le moyen de l’atteindre est le nom de l’interface
qui assure cette connexion ;

— pour tout autre réseau, le moyen de l’atteindre est l’adresse
du routeur qui y mène.

Fonctionnellement, la différence entre une station ordinaire et
un routeur, c’est que le routeur est programmé pour recevoir des
paquets sur une interface et les réémettre sur une autre, alors que
la station sait juste émettre et recevoir. Lorsqu’un routeur réémet
un paquet, il ne modifie pas l’adresse de l’émetteur, qui reste celle
de l’émetteur original.

Une fois obtenue l’adresse IP de destination au moyen du DNS
(voir section 6.5.6), l’algorithme d’émission d’un datagramme est
le suivant :

— Extraire de l’adresse de destination la partie adresse de ré-
seau.
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— Chercher dans la table de routage cette adresse de réseau.
Quatre cas sont possibles :
1. l’adresse du réseau de destination figure dans la table

de routage et y correspond à un réseau directement
connecté : il y a remise directe du datagramme sur ce
réseau par l’interface désignée et le routage est fait (il
faudra encore traduire l’adresse IP en adresse MAC par
le protocole ARP (Address Resolution Protocol) 14 ;

2. le réseau de destination figure dans la table de routage et
le moyen de l’atteindre qui y est mentionné est l’adresse
d’un routeur : le datagramme est transmis à ce routeur
selon le procédé vu pour le cas précédent ;

3. le réseau de destination ne figure pas dans la table de
routage, mais la table mentionne un routeur par défaut :
le datagramme est transmis à ce routeur ;

4. tout autre cas déclenche une erreur de routage (le trop
célèbre message Network is unreachable).

Le cas le plus fréquent est bien sûr le cas 3 ! Si nous imaginons
le réseau comme un océan qui reçoit des fleuves eux-mêmes dotés
d’affluents, le réseau local de notre campus ou de notre université est
un peu comme le bassin d’une rivière et de ses affluents : l’itinéraire
par défaut pour nos bouteilles à la mer, c’est d’aller vers l’aval et de
tomber dans le fleuve qui figure le réseau de notre FAI. Mais une fois
dans l’océan, il va bien falloir trouver l’embouchure du fleuve qu’il
faudra remonter pour arriver finalement au ruisseau sur la berge
duquel repose le serveur WWW que nous voulons atteindre. Y a-t-
il un gigantesque routeur central qui posséderait dans ses tables de
routage les adresses de tous les réseaux de l’univers ? Ce serait une
solution théorique, mais ce que nous avons déjà dit de l’Internet et
ce que nous savons de sa vitesse d’évolution nous suggère que cela
ne fonctionne pas ainsi : la solution est à la section suivante.

14 Le principe du protocole ARP est le suivant : la station qui possède une
adresse IP et veut connaître l’adresse MAC correspondante (cela ne marche
qu’au sein d’un même réseau local, de type Ethernet par exemple) envoie en
diffusion générale à toutes les stations du réseau un message qui comporte
l’adresse IP en question. La station qui possède cette adresse IP se reconnaît
et répond « C’est moi, et voici mon adresse MAC ».
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Algorithmes de routage

La solution hypothétique évoquée ci-dessus, d’un routeur cen-
tral de l’Internet distribuant les datagrammes à tous les réseaux, et
que l’on peut raffiner en découpant l’Internet en plaques organisées
chacune autour d’un routeur possédant toutes les adresses réseau
de la plaque et communiquant avec un routeur central moins mons-
trueux, possédant les adresses des plaques et le moyen d’attribuer
un réseau à une plaque, cela s’appellerait le routage statique. C’était
la solution retenue par les réseaux X25 du bon vieux temps du mini-
tel et du monopole des réseaux, et c’est une solution utilisable à une
échelle pas trop grande, pour un réseau d’entreprise par exemple.
Mais pour un réseau de grande taille et dépourvu d’administration
centralisée, comme l’Internet, ce ne serait guère réaliste. Ce qui a
fait la force de l’Internet, c’est sa capacité à acheminer les paquets
à destination dans un réseau en évolution permanente et sans ad-
ministration centrale, bref le routage dynamique dont nous allons
étudier maintenant les principes.

Pour poursuivre notre métaphore fluviale et maritime, les ré-
seaux locaux et de FAI correspondent aux ruisseaux, rivières et
fleuves et possèdent tous un routage par défaut simple : si la des-
tination n’est pas locale, elle sera, le plus souvent vers l’Internet,
c’est-à-dire au-delà des mers, donc vers l’embouchure (respective-
ment, vers le routeur de sortie du réseau local).

À leur embouchure sur l’océan de l’Internet, nous pouvons nous
imaginer que chaque réseau de FAI possède un routeur, ou plusieurs
dans le cas de deltas, chargés de trouver les bons itinéraires pour les
paquets qui sortent du réseau ou qui veulent y entrer. Il pourra y
avoir aussi des routeurs en pleine mer, chargés d’orienter de grands
flux maritimes, vers le Cap Horn ou le détroit de Gibraltar... Les
routeurs du delta du Gange ignorent bien sûr le détail des réseaux
du bassin de la Méditerranée, détail qui devra en revanche être
connu du routeur du détroit de Gibraltar. L’idée du routage dans
l’Internet, c’est que tous ces routeurs sont capables d’échanger des
informations, et que plus précisément ils informent leurs voisins
des réseaux auxquels ils sont directement connectés. Ainsi, une fois
notre datagramme 15 tombé dans l’océan, il va aller de routeur en

15 Rappelons qu’un datagramme IP c’est un paquet, à la fragmentation près :
si un datagramme est fragmenté, c’est chaque fragment qui est un paquet.
La fragmentation tombe en désuétude.
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routeur, aucun ne connaissant sa destination finale, mais chacun
étant capable de trouver un itinéraire qui l’en rapproche. C’est ce
que l’on appelle le routage dynamique.

Le routage dynamique, pour être efficace dans un réseau aussi
vaste que l’Internet, met en œuvre des protocoles complexes. En fait
l’Internet est une confédération de réseaux IP, mais il existe pour
l’organisation du routage un niveau d’agrégation intermédiaire, le
Système Autonome (Autonomous System, AS), qui est un regrou-
pement de réseaux qui peuvent être vus de l’extérieur comme une
entité pourvue d’une autorité administrative unique. Ainsi, sauf
pour ceux qui n’ont pas bien compris le fonctionnement de l’In-
ternet, chaque FAI et ses clients apparaîtront comme un seul AS.
Des tables de routage globales seront échangées entre AS. Au sein
d’un AS seront utilisés des protocoles plus simples et des tables de
routage plus petites, étant donné qu’un client désireux d’envoyer
un paquet à une adresse extérieure à l’AS la remettra à un rou-
teur de son FAI, qui, lui, possédera les tables de routages globales.
Après tout, lorsque nous mettons une carte postale à la boîte, nous
nous attendons à ce que la Poste française sache comment la faire
parvenir à la Poste vénézuélienne, qui elle saura trouver notre cor-
respondante à Caracas.

Le protocole global de communication de tables de routages
d’AS à AS est BGP (Border Gateway Protocol). Il y a plusieurs
protocoles de routage dynamique au sein d’un AS ou d’un réseau,
celui qui tend aujourd’hui à être le plus utilisé est OSPF (Open
Shortest Path First), qui repose sur un algorithme de recherche de
parcours dans un graphe dû à Dijkstra en 1959 (encore lui ! inutile
de dire qu’à cette époque il ne soupçonnait pas l’usage qui serait
fait de son algorithme). OSPF a supplanté d’autres protocoles parce
qu’il donne de meilleurs résultats, mais cette supériorité est au prix
d’une complexité élevée. Pour ceux de nos lecteurs qui ne se des-
tinent pas à la profession d’ingénieur réseau, nous exposerons un
protocole plus simple et encore souvent utilisé dans de petits ré-
seaux, RIP (pour Routing Information Protocol), qui repose sur
l’algorithme de Bellman-Ford, imaginé en 1957 par Richard Bell-
man et doté d’une version distribuée en 1962 par Lestor R. Ford
Jr et D. R. Fulkerson 16. Comme beaucoup d’algorithmes utilisés
dans le monde des réseaux, il est issu du domaine de la recherche

16 BGP utilise également l’algorithme de Bellman-Ford.
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opérationnelle, et appartient à la famille des algorithmes de calcul
de chemin le plus court dans un graphe par une méthode du type
« vecteur de distance », par opposition à OSPF qui appartient à la
famille des méthodes de calcul « par l’état des liaisons ».

Les méthodes de calcul de chemin le plus court dans un graphe
« par l’état des liaisons » comme OSPF imposent que chaque rou-
teur possède dans ses tables la topographie et la description de
l’ensemble du domaine de routage, et que toute cette information
soit retransmise à travers tout le domaine chaque fois qu’elle subit
une modification. En revanche avec les méthodes de calcul « par
vecteur de distance » comme RIP chaque routeur ne maintient que
l’information qui le concerne lui-même et celle relative à ses voisins
immédiats. On conçoit qu’OSPF ait attendu pour se généraliser
une époque de débits élevés et de mémoire bon marché, et que RIP
ait eu plus de succès dans la période précédente.

Le but d’un algorithme de routage est de trouver le chemin
le plus court entre deux points d’un graphe (respectivement d’un
réseau). En termes de réseaux informatiques, « court » ne désigne
pas vraiment une distance en termes de longueur, mais plutôt en
termes de débit de liaison et de nombre de nœuds traversés ; une
distance faible désignera une liaison rapide avec peu de routeurs,
une distance élevée une liaison lente ou qui traverse de nombreux
routeurs.

Le principe de fonctionnement de RIP est le suivant : chaque
routeur du réseau propage sur toutes ses interfaces des vecteurs
de distance, qui constituent en fait le résumé de sa table de rou-
tage. Initialement (c’est-à-dire à la mise sous tension) un routeur ne
connaît qu’un itinéraire, celui qui mène à lui-même, avec une dis-
tance nulle. Mais en propageant cette table de routage élémentaire
il va permettre à ses voisins d’apprendre son existence ; lui-même
apprendra de la même façon l’existence de ses voisins, et des voisins
de ses voisins ; ainsi au fur et à mesure les tables de routage des uns
et des autres s’enrichiront. Ce que nous démontrent MM. Bellman,
Ford et Fulkerson, c’est que cet algorithme converge, c’est à dire
qu’à l’issue d’un certain nombre d’échanges de tables de routage le
système constitué par ce réseau de routeurs atteindra un état stable,
où l’envoi de nouvelles informations de routage ne provoquera plus
aucune modification des tables.

Un routeur est capable de tester ses interfaces, et notamment de
détecter la présence ou l’absence d’une interface qui répond à l’autre
extrémité. En cas de coupure inopinée d’une liaison, les routeurs
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concernés la détectent, recalculent leurs tables de routage en af-
fectant une distance infinie à la destination précédemment atteinte
par la liaison coupée, et l’algorithme de propagation est exécuté à
nouveau, jusqu’à l’obtention d’un nouvel état stable.

Le lecteur curieux de ces questions consultera avec profit le livre
de Christian Huitema Routing in the Internet [63].

Calcul des tables de routage

Nous raisonnerons sur un réseau très simple à cinq nœuds (cinq
routeurs) tel que représenté par la figure 6.14. Notre exercice de
routage doit beaucoup au livre de Christian Huitema Routing in
the Internet [63] (avec son aimable autorisation), qui donne une
description complète de ces problèmes et de leurs solutions.

A B

C

DE

3 4

1

2

5
6

Figure 6.14 – Un réseau à cinq routeurs.

Chaque arc du graphe est flanqué d’un numéro d’identification
de liaison. Nous supposons le graphe non orienté, et la distance
de A à B égale à la distance de B à A. Chaque arc correspond à
une liaison dont la distance entre extrémités vaut 1. Examinons
maintenant les tables de routage de chaque routeur à l’initialisation
du système, par exemple lors de la mise sous tension des cinq
routeurs. Soit par exemple la table de routage de A :

de A vers liaison distance
A locale 0

Lors de son initialisation A ne possède dans sa table de
routage qu’un itinéraire vers lui-même par l’interface locale, avec
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une distance nulle. On suppose qu’un routeur connaît sa propre
adresse et ses interfaces actives, mais au démarrage il ignore ce
qu’il y a derrière les interfaces. Le vecteur de distance de A, à cet
instant, est très simple :

A=0

Peu complexé par l’indigence de cette information, A va
l’émettre sur toutes ses interfaces à l’usage de ses voisins
immédiats, en l’occurrence B et E. Ainsi B reçoit ce vecteur par la
liaison 1, et ajoute à toutes les distances reçues le coût de la liaison
1, que nous avons supposé égal à 1, ce qui transforme le message
en A=1. Puis B examine sa table pour voir s’il dispose déjà d’une
information de liaison vers A ; comme ce n’est pas le cas il va juste
introduire cette nouvelle donnée. La table de routage de B, qui
avant de recevoir le message de A était ceci :

de B vers liaison distance
B locale 0

devient cela :

de B vers liaison distance
B locale 0
A 1 1

Comme B vient d’enrichir sa table de routage, il va émettre
son propre vecteur de distance à destination de ses voisins A, C
et D par les liaisons 1, 2 et 4 :

B=0, A=1

Pendant ce temps E aura reçu le message de A, aura effectué
les mêmes opérations de mise à jour de sa table de routage
(mutatis mutandis) et transmettra son vecteur de distance à A et
D sur les liaisons 3 et 6 :

E=0, A=1

Supposons que A reçoive le message de B avant celui de E ; il
ajoute 1 à toutes les distances, qui deviennent donc B=1, A=2 et
les compare à celles qui figurent dans sa table. Comme la distance
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A=2 est supérieure à celle qui figure déjà dans la table, il n’insère
que l’information relative à B, puis il reçoit le message de E,
effectue les mêmes calculs et sa table devient :

de A vers liaison distance
A locale 0
B 1 1
E 3 1

C reçoit par la liaison 2 le message B=0, A=1 ; toujours selon
le même algorithme il ajoute 1 à toutes les distances et met à jour
sa table qui devient :

de C vers liaison distance
C locale 0
B 2 1
A 2 2

D aura reçu de B le même message que C par la liaison 4,
puis par la liaison 6 un message de E. Ces messages comportent
chacun une destination vers A, avec des distances équivalentes ;
nous supposerons que la première information est retenue et la
table de D devient :

de D vers liaison distance
D locale 0
B 4 1
A 4 2
E 6 1

A, C et D ont donc de nouvelles tables de routage, ils vont
en déduire de nouveaux vecteurs de distance qu’ils vont diffuser à
leurs voisins. De ce fait B, D et E vont mettre à jour leurs tables
de routage et diffuser de nouveaux vecteurs qui vont provoquer des
mises à jour des tables de A, C et E. Nous invitons le lecteur à
effectuer ces calculs à titre d’exercice délassant, et à constater qu’à
l’issue de ces opérations le système a atteint un état stable, c’est-à-
dire que l’envoi des nouveaux vecteurs de distance résultant de la
dernière mise à jour ne provoquera aucune modification des tables
de routage : on dit que l’algorithme a convergé.
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Reconfiguration en cas de coupure de liaison

Un des avantages attendus du routage dynamique, c’est que
le réseau soit capable de se reconfigurer automatiquement en cas
de modification inopinée de sa topologie. Supposons donc que la
pelleteuse traditionnelle et canonique coupe soudain la liaison 1,
avec pour résultat la topologie représentée par la figure 6.15.
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Figure 6.15 – Rupture de liaison !

Les interfaces correspondantes des nœuds concernés, A et B,
vont détecter l’incident ; A et B vont affecter à la liaison 1 un coût
infini (∞) et mettre à jour leurs tables de routage en notant une
distance infinie pour toutes les destinations atteintes par la liaison
1 :

de A vers liaison distance
A locale 0
B 1 ∞
C 1 ∞
D 1 ∞
E 3 1

de B vers liaison distance
A 1 ∞
B locale 0
C 2 1
D 4 1
E 1 ∞
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A va calculer et émettre un nouveau vecteur de distance sur la
liaison 3 :

A=0, B=∞, C=∞, D=∞, E=1
et B sur les liaisons 2 et 4 :

A=∞, B=0, C=1, D=1, E=∞
E va recevoir le message de A, C et D celui de B, et ils vont

mettre leurs tables à jour en fonction des nouvelles distances :

de E vers liaison distance
A 3 1
B 3 ∞
C 6 2
D 6 1
E locale 0

de C vers liaison distance
A 2 ∞
B 2 1
C locale 0
D 5 1
E 5 2

de D vers liaison distance
A 4 ∞
B 4 1
C 5 1
D locale 0
E 6 1

À l’issue de ces mises à jour C, D et E vont émettre des vecteurs
de distance :

C émet : C=0, B=1, A=∞, D=1, E=2 sur les liaisons 2 et
5 ; D émet : D=0, B=1, A=∞, E=1, C=1 sur les liaisons 4, 5
et 6 ; E émet : E=0, A=1, B=∞, D=1, C=2 sur les liaisons 3
et 6.
qui vont à leur tour déclencher les mises à jour des tables de A,
B, D et E :
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de A vers liaison distance
A locale 0
B 1 ∞
C 3 3
D 3 2
E 3 1

de B vers liaison distance
B locale 0
A 1 ∞
C 2 1
D 4 1
E 4 2

de D vers liaison distance
D locale 0
A 6 2
B 4 1
C 5 1
E 6 1

de E vers liaison distance
E locale 0
A 3 1
B 6 2
C 6 2
D 6 1

qui vont à nouveau émettre des vecteurs de distance :
A émet : A=0, B=∞, C=3, D=2, E=1 sur la liaison 3 ; B

émet : A=∞, B=0, C=1, D=1, E=2 sur les liaisons 2 et 4 ; D
émet : D=0, B=1, A=∞, E=1, C=1 sur les liaisons 4, 5 et 6 ;
E émet : E=0, A=1, B=∞, D=1, C=2 sur les liaisons 3 et 6.
ce qui va déclencher la mise à jour des tables de A, B et C :

de A vers liaison distance
A locale 0
B 3 3
C 3 3
D 3 2
E 3 1
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de B vers liaison distance
A 4 3
B locale 0
C 2 1
D 4 1
E 4 2

de C vers liaison distance
A 5 3
B 2 1
C locale 0
D 5 1
E 5 2

Ces nœuds vont à nouveau émettre des vecteurs de distance,
mais qui n’apporteront aux destinataires aucune distance vers un
nœud plus courte que celles qu’ils possèdent déjà, et qui donc ne
déclencheront aucune modification des tables. Cet exercice inspiré
de Christian Huitema conduit à un nouvel état stable qui assure
la connectivité générale, ce que nous promettaient MM. Bellman,
Ford et Fulkerson.

Problèmes de routage

A BR 12

Figure 6.16 – Avant le rebond

Dans de nombreux cas, RIP réussit brillamment à reconfigurer
automatiquement un réseau endommagé et à lui rendre sa connec-
tivité. RIP doit aussi éviter des pièges, comme celui tendu par la
situation illustrée par la figure 6.16, où l’on voit, à l’état initial, un
nœud B qui accède au réseau R par l’intermédiaire du nœud A.

Supposons maintenant que la liaison 2 entre A et R soit coupée
inopinément (figure 6.17) : A connaissait un itinéraire vers R par
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cette liaison 2, il ne peut plus désormais essayer de faire passer
ses paquets que par la liaison 1 vers B, ce qui est clairement sans
espoir. Avec un algorithme trop naïf, A peut envoyer ses paquets
à B, qui dirait « oui, je connais un excellent itinéraire vers R, via
A », et acheminerait les paquets vers A, qui les renverrait vers B,
et ainsi de suite... En fait, la convergence de l’algorithme dépend
de qui envoie son vecteur de distance le premier :

A BR 1
2

Figure 6.17 – Rebond !

— si A émet son vecteur de distance avant que B ait pu le faire,
l’information de la coupure de la liaison 2 sera effectivement
correctement propagée ;

— si B émet son vecteur de distance entre l’instant où A détecte
la coupure de liaison et celui où A aurait effectivement dû
émettre le sien, par exemple parce qu’il a reçu une mise à
jour en provenance d’un autre point du réseau, A va accepter
la vision de B et nous aurons une situation de boucle ou
rebond.

Une telle situation ne peut être évitée que par une convention.
À chaque échange de vecteur de distance, la distance de A à R croît
de 2 par le mécanisme suivant :

— lorsque A constate la rupture de liaison, il mentionne dans
sa table de routage une distance infinie vers R ;

— si à cet instant A reçoit de B un vecteur qui indique pour
R une distance 2, il constate que cette valeur est inférieure
à celle contenue dans sa table, et la met à jour avec pour R
la liaison 1 et la distance 2+1=3, puis diffuse son vecteur de
distance ;

— B reçoit le vecteur de A et apprend que son itinéraire vers
R a maintenant une distance de 3 : il lui ajoute 1 et diffuse
son vecteur avec la valeur 3+1=4...
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Pendant tout ce temps, les paquets envoyés de A ou de B vers
R seront routés de A à B puis de B à A et vice versa...

Pour éviter ce processus de boucle infinie, on fixera une valeur
élevée qui sera considérée, par convention, égale à l’infini, et quand
la distance atteindra cette valeur la destination sera réputée im-
possible à atteindre. Dans ce contexte, l’infini pourra être fixé à 32,
par exemple. Les paquets seront aussi dotés d’un paramètre « du-
rée de vie » (TTL, Time to live), à savoir un nombre maximum de
nœuds qu’ils auront le droit de traverser avant d’être purement et
simplement abandonnés.

6.5.8 Nouvelles tendances IP
Nous l’avons dit, le protocole IP est entré dans une période de

transition de la version 4 à la version 6 (la version 5 n’a jamais
été déployée). Compte tenu du nombre considérable d’installations
concernées, cette transition sera longue et les deux versions sont
appelées à cohabiter pendant des années. Les routeurs du cœur
de l’Internet (les core routers) seront bien sûr appelés les premiers
à pouvoir traiter simultanément les deux versions, ils le font déjà
d’ailleurs, cependant que la migration des stations de travail de base
n’est pas vraiment urgente. Il existe un RFC qui précise comment
encapsuler une adresse v4 au format v6.

IPv6, outre le nouveau format d’adresses qui en est l’aspect le
plus spectaculaire, comporte d’autres nouveautés qui vont donner
des solutions techniquement correctes à des problèmes que la ver-
sion 4 résout par des artifices fragiles. Parmi les artifices employés
par IPv4 pour faire face à la pénurie d’adresses, nous avons cité
CIDR (Classless Interdomain Routing) et NAT (Network Address
Translation). Le nouvel espace d’adressage offert par les 128 bits de
l’adresse IPv6 mettra un terme à ces acrobaties, et de toute façon
l’ancienne notion de classe disparaît.

IPv6 introduit également de nouveaux protocoles de sécurité
désignés collectivement par le terme IPSec. En fait IPSec inter-
vient au niveau de la couche transport (TCP), mais IPv6 le rend
obligatoire, cependant que des adaptations permettent de l’intro-
duire avec IPv4. IPSec définit en gros deux classes de services, une
destinée à l’authentification des parties, l’autre au chiffrement.

Le support des nœuds mobiles est un autre problème apparu
après la conception d’IPv4, et qui avait dû être résolu par des ad-
jonctions plus ou moins satisfaisantes. La question intervient au
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stade du routage : la station mobile établit une communication
avec une station fixe, qui n’est par définition pas toujours la même.
L’émission depuis la station mobile vers une adresse IP quelconque
ne pose aucun problème particulier, ce qui est inédit c’est la fa-
çon d’atteindre la station mobile depuis un point quelconque de
l’Internet. La solution utilisée sous IPv4, nommée mobile IP, assez
expérimentale, est incorporée à IPv6 et généralisée.

La configuration d’une station sous IPv4 était souvent une
opération manuelle laborieuse par manque de possibilités d’auto-
configuration. Quel utilisateur n’a pas blêmi devant un écran où un
logiciel lui demandait son adresse IP et, pire, celle de son serveur
de noms ? Le déploiement de DHCP (Dynamic Host Configuration
Protocol) a contribué à résorber ce problème, et cette solution sera
généralisée avec IPv6.

6.5.9 En quoi IP est-il supérieur à X25 ?
Nous avons déjà vu quelques éléments de réponse à cette ques-

tion, dont nous allons faire ici la synthèse.

Invention de la transmission par paquets

La transmission de données par paquets sur un réseau a été in-
ventée indépendamment par Paul Baran de la Rand Corporation
(un organisme de recherche à but non lucratif sous contrat avec
le Département de la Défense américain), par Leonard Kleinrock
de l’université Stanford et par Donald Davies du National Physical
Laboratory britannique, au début des années 1960. On se repor-
tera au livre de Janet Abbate [1] pour une discussion des questions
d’antériorité.

Lawrence Roberts, à l’origine (à la suite de Robert Taylor) du
réseau ARPANET, créé en 1969 par la firme Bolt, Beranek & New-
man (BBN) pour l’Advanced Research Projects Agency (ARPA)
du Département de la Défense américain, avait eu connaissance
des techniques de transmission par paquets en rencontrant Roger
Scantlebury, un collaborateur de Donald Davies, lors d’une confé-
rence sur les réseaux à Gatlinburg, Tennessee, en octobre 1967.
Convaincu par l’idée, il allait la mettre en œuvre dans ARPANET.
Si ARPANET était bien une émanation du Département de la Dé-
fense, son usage n’était pas militaire, mais destiné au partage de
moyens de calculs entre laboratoires de recherche, le plus souvent



Couche 3, réseau 216

universitaires, sous contrat avec l’ARPA. Janet Abbate décrit de fa-
çon nuancée les équilibres délicats entre administrateurs militaires
et chercheurs d’esprit plutôt anarchiste, ce en pleine période de
guerre du Viêt-Nam.

Commutation de circuits

Dans les réseaux de télécommunications anciens, l’établisse-
ment d’une communication consistait à établir un circuit physique
continu (en cuivre) entre les deux extrémités. Le circuit ainsi éta-
bli était physiquement réservé à la communication en cours. Puis
furent inventées des techniques de multiplexage destinées à per-
mettre le partage de liaisons physiques entre plusieurs communica-
tions : le multiplexage de fréquence partageait le spectre disponible
en plages de fréquences attribuées chacune à une communication,
le multiplexage temporel leur attribuait des intervalles de temps
successifs.

Comme mentionné plus haut, la transmission par paquets per-
mettait un multiplexage plus souple et plus efficace, grâce à la
présence dans chaque paquet de l’adresse de destination, qui per-
mettait de mélanger des paquets de diverses communications sans
contraintes particulières, dans la limite du débit maximum de
chaque tronçon de réseau emprunté.

Les premiers réseaux de paquets fonctionnaient selon un prin-
cipe de circuits virtuels : pour une transmission donnée, les ordina-
teurs de commande du réseau, que l’on n’appelait pas encore des
routeurs, calculaient un itinéraire, et tous les paquets de ce flux em-
pruntaient cet itinéraire. La technique des circuits virtuels plaçait
les opérations de calcul d’itinéraire et de contrôle d’acheminement
au cœur du réseau, dans ses systèmes de supervision qui effectuaient
l’aiguillage (la commutation) des flux de données.

Le réseau ARPANET, le réseau du National Physical Laboratory
britannique, ainsi que les réseaux X25 comme le réseau français
Transpac, étaient des réseaux à commutation de circuits virtuels.

L’année charnière : 1972

1972 est une année charnière dans le monde des réseaux. Vin-
ton Cerf et Robert Kahn étaient les chefs de file du développement
d’ARPANET, qui reliait 29 nœuds. L’IRIA français, ancêtre d’In-
ria, avait lancé le réseau Cyclades sous la direction de Louis Pouzin.
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Le National Physical Laboratory britannique avait un réseau conçu
par Donald Davies. Les PTT de plusieurs pays européens (dont la
France) avaient aussi des projets de réseaux.

En octobre 1972 tous ces groupes se réunirent à Washington
pour la première Conférence internationale sur les communications
informatiques, avec l’idée, entre autres, d’interconnecter leurs ré-
seaux. Cette réunion fut le lieu d’intenses échanges d’idées et d’ex-
périences, à l’origine de la conception par Cerf et Kahn du protocole
TCP 17 en 1974 (la couche réseau n’apparaîtra comme un protocole
distinct de TCP sous le nom d’IP 18 qu’en 1978), et aussi du mo-
dèle OSI [136] en sept couches publié par un article fameux [139]
d’Hubert Zimmerman (1941-2012).

Le modèle OSI a connu fort peu de réalisations (à ma connais-
sance la plus complète fut DECNET de Digital Equipment) et en-
core moins de déploiements significatifs, mais par contre il a fourni
un cadre de référence conceptuel inégalé et toujours d’actualité. Ce
n’est pas moi qui le dis, c’est Robert Kahn : les auteurs du modèle
OSI « ont donné aux gens un moyen de se représenter les protocoles
sous forme de couches. Nous avions sûrement déjà cela à l’esprit,
mais nous ne l’avions jamais formulé de cette façon, et ils l’ont
fait. » [66]. Un des enjeux débattus était la possibilité d’intercon-
necter des réseaux différents, ce qui allait mener à l’idée d’Internet.

Je traduis le passage de Janet Abbate qui commente la contribu-
tion de l’équipe Cyclades à cette conférence (p. 171 de l’édition élec-
tronique) : « Cyclades était un projet de réseau expérimental lancé
en 1972 avec un financement du gouvernement français. Ses archi-
tectes, Louis Pouzin et Hubert Zimmermann, avaient des idées très
tranchées sur l’interconnexion de réseaux [(internetworking)]. En
fait, Cyclades, à la différence d’ARPANET, avait été conçu expli-
citement pour permettre l’interconnexion ; il pouvait, par exemple,
traiter des adresses de formats différents et des niveaux de service
variés [102, p. 416].

17 TCP, pour Transport Control Protocol, est conformément à son nom le pro-
tocole qui spécifie comment un message, éventuellement constitué de nom-
breux paquets, est acheminé de bout en bout (de l’émetteur au récepteur),
complet et sans erreur.

18 IP, pour Internet Protocol, est le protocole de réseau, qui spécifie comment
est calculé, pour chaque paquet de données, l’itinéraire selon lequel il sera
acheminé à destination. La séparation de TCP et d’IP permet de laisser à
TCP le soin du contrôle d’intégrité des données, cependant qu’IP ne s’occupe
que du calcul d’itinéraire.



Couche 3, réseau 218

Cyclades était basé sur un système très simple de commutation
de paquets. Plutôt que de confier au réseau la tâche de mainte-
nir une connexion stable entre deux extrémités [hosts, hôtes], à la
façon d’ARPANET, Cyclades émettait simplement des paquets in-
dividuels (sous le nom de “datagrammes”). L’argument de Pouzin
et Zimmermann était que plus les fonctions du réseau resteraient
simples, plus la construction d’un internet serait facile. Selon Pou-
zin [102, p. 429], “plus un réseau sera perfectionné, moins il sera
facile de l’interfacer correctement avec un autre. En particulier,
toute fonction autre que l’émission de paquets sera selon toute pro-
babilité trop spécifique pour communiquer correctement avec un
voisin.” Afin de cantonner les fonctions du réseau au strict mini-
mum, les chercheurs français soutenaient qu’il était nécessaire d’at-
tribuer la responsabilité de maintenir des connexions stables au
protocole d’extrémité [hôte]. Cela allait à l’encontre à la fois de la
façon dont BBN avait conçu l’ARPANET et de celle dont les opé-
rateurs de télécommunications en France et ailleurs prévoyaient de
construire leurs réseaux publics de données. Sans doute en prévision
d’une opposition à leur approche non conventionnelle, les membres
du groupe Cyclades défendaient leur philosophie d’interconnexion
avec une extrême vigueur. Pouzin et Zimmermann étaient actifs au
sein de l’INWG [(International Packet Network Working Group)].
Un autre membre de l’équipe Cyclades, Gérard Le Lann, travaillait
dans le labo de Cerf à Stanford, où il avait la possibilité de parti-
ciper directement à la conception du système internet de l’ARPA.
Selon Cerf [29], le groupe Cyclades “contribuait beaucoup aux pre-
mières discussions pour savoir à quoi ressemblerait le [protocole
d’extrémité].” »

L’émission de datagrammes indépendants les uns des autres,
simplement munis de leurs adresses d’émission et de destination,
laisse à chaque routeur la décision de la prochaine étape dans le ré-
seau. Les différents datagrammes d’une même transmission peuvent
emprunter des itinéraires différents et arriver à destination dans
le désordre. On laisse à la charge du protocole d’extrémité (par
exemple TCP) le soin de vérifier qu’ils sont tous arrivés, sans erreur,
et de les mettre dans le bon ordre. C’est une différence essentielle
avec les protocoles dits « connectés », tels que X25. Ou en d’autres
termes, l’équipe Cyclades proposait un protocole de datagrammes
plutôt qu’un protocole de messages.
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Commutation de paquets

L’Internet est de toute évidence une œuvre collective, il n’y a
pas un unique inventeur de l’Internet, mais il n’y en a pas non
plus une multitude. Ce qui ressort de la lecture d’historiennes spé-
cialistes du domaine comme Janet Abbate et Valérie Schafer ou
d’acteurs de ces événements comme Vinton Cerf, Robert Kahn et
Alexander McKenzie [83], c’est que si Cerf et Kahn furent bien les
maîtres d’œuvre de la transition d’ARPANET à l’Internet que nous
connaissons et de la réalisation de TCP puis d’IP, l’invention du
datagramme, qui allait à contre-courant de tous les projets et de
toutes les réalisations de l’époque, et qui a joué un rôle déterminant
dans la constitution du réseau tel que nous le connaissons, est bien
le fait de l’équipe Cyclades dirigée par Louis Pouzin.

Louis Pouzin avait eu une autre idée, malheureusement non re-
tenue à l’époque. L’adresse IP d’un nœud du réseau sert à la fois à
l’identifier et à le localiser. Pouzin avait suggéré de séparer ces deux
fonctions, mais Cerf et Kahn avaient trop avancé dans la voie qu’ils
s’étaient fixée et n’ont pas voulu revenir en arrière. Cette confusion
des fonctions d’identification et de localisation a de nombreux in-
convénients, notamment pour la sécurité du réseau, surtout depuis
la généralisation des mobiles, et pour la contourner les opérateurs
du réseau sont contraints à d’inélégantes gymnastiques. Plusieurs
projets existent pour corriger cette situation, mais modifier de fa-
çon significative le fonctionnement de l’Internet en son cœur a de
quoi faire fléchir les âmes les mieux trempées.

Le datagramme allait permettre de s’affranchir d’une gestion
lourde du réseau, au profit d’un réseau plus simple et du report de
la complexité dans les protocoles d’extrémité (par exemple TCP).
Cette simplification a permis l’extraordinaire croissance de l’Inter-
net, sans avoir à remettre fondamentalement en cause l’architecture
de la couche réseau (IP). D’autre part, c’est le fait de réserver aux
protocoles d’extrémité la plus grande partie de la complexité qui
a permis le développement sur le réseau de multiples protocoles
spécialisés, et ce, encore une fois, sans remise en cause de l’archi-
tecture générale. C’est en cela que le datagramme est une invention
extraordinaire, qui a permis le succès non moins extraordinaire de
l’Internet, et dont nous sommes redevables à l’équipe Cyclades di-
rigée par Louis Pouzin.
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6.6 Couche 4, transport
La couche transport a le numéro 4 dans le modèle OSI ; elle est

la troisième couche de TCP/IP. Nous nous intéresserons essentielle-
ment à TCP/IP, qui en fait propose le choix entre deux modèles de
transport : UDP (User Datagram Protocol), protocole simple non
fiable sans état, et TCP (Transmission Control Protocol).

6.6.1 TCP (Transmission Control Protocol)
Le protocole de transport TCP (couche 4 du modèle OSI) four-

nit aux protocoles de niveau application (HTTP comme Hyper-
Text Transfer Protocol pour le WWW, SMTP comme Simple Mail
Transfer Protocol pour le courrier électronique, H323 pour la visio-
conférence, etc.) un flux de bits fiable de bout en bout au-dessus
de la couche IP.

Pour obtenir ce résultat, TCP est un protocole en mode
connecté, par opposition à IP qui est un protocole sans connexion,
c’est-à-dire que tous les segments TCP qui correspondent au même
échange de données sont identifiés comme appartenant à une même
connexion.

32 bits

(*) UAPRSF : champs de 6 bits de contrôle :
URG ACK PSH RST SYN FIN

Données

Options

Port d’origine Port de destination

Numéro de séquence

Numéro d’acquittement

somme de contrôle

Taille de la fenêtreUAPRSF(*)

Figure 6.18 – Segment TCP
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Connexion

TCP découpe les messages qui lui sont remis par les protocoles
de la couche application en segments. Chaque segment sera ensuite
remis à la couche réseau (IP) pour être inclus dans un datagramme
IP. La taille d’un segment est donc calculée de façon à ce qu’il puisse
tenir dans un datagramme, c’est-à-dire que la taille maximum d’un
segment est égale à la taille maximum d’un datagramme diminuée
de la longueur des en-têtes de datagramme.

Une connexion est totalement identifiée par ses adresses d’ori-
gine et de destination (inscrites dans les en-têtes de ses data-
grammes IP) et par ses numéros de ports 19 d’origine et de des-
tination, qui sont inscrits dans les en-têtes de ses segments TCP.
L’association d’une adresse IP et d’un numéro de port sur le même
nœud constitue une extrémité de connexion.

En fait le mécanisme des sockets réseau repose sur le méca-
nisme des sockets du noyau, qui est un mécanisme de communica-
tion entre processus. Mais il n’est pas illogique qu’un mécanisme de
communication en réseau se traduise au bout du compte par une
communication entre processus.

Modèle client-serveur et numéros de port

Les numéros de port sont des identifiants conventionnels. Selon
le modèle client-serveur implicite dans ce type d’accès au réseau,
un client actionné par un utilisateur (navigateur WWW, logiciel
de courrier électronique) demande un service à un serveur distant
(serveur WWW, serveur de courrier, serveur de fichiers...). Du côté
du serveur, le service demandé est identifié par un numéro de port
conventionnel, connu et habituel, en un mot réservé : 80 pour un
serveur WWW, 25 pour un serveur de courrier électronique, 53

19 Le terme port ne doit pas suggérer une métaphore portuaire : il s’agit en
fait d’un numéro conventionnel, qui identifie éventuellement un protocole de
niveau application, ainsi port 25 pour le protocole SMTP de courrier élec-
tronique, port 80 pour le Web, port 22 pour le protocole de communication
chiffrée SSH. En anglais port signifie sabord, lumière dans le piston d’un
moteur deux-temps, bref un orifice par lequel peut s’écouler un flux. Comme
le flux des données d’une communication selon un protocole donné. Un port
est choisi lors de l’ouverture d’une socket (douille, ou prise), ce qui complète
la métaphore de l’établissement d’un tuyau entre deux systèmes communi-
cants, comme le camion citerne et la cuve à mazout. Voir aussi la note 11 p.
193.
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pour un serveur de noms). Du côté du client, TCP attribue à la
demande de connexion un numéro de port arbitraire, non encore
utilisé. Ainsi, il est possible d’établir entre deux nœuds plusieurs
connexions vers un même service sans qu’elles se confondent : elles
auront même adresse de serveur, même adresse de client, même
port de serveur, mais des ports de client différents.

Poignée de main en trois étapes (three-way handshake)

Avant tout transfert de données, TCP ouvre donc une
connexion, ce qui se passe selon la procédure suivante appelée poi-
gnée de main en trois étapes (three-way handshake) (voir figure
6.19) :

Serveur
(WWW par
exemple)

SYN et ACK positionnés

SYN positionné, port dest. = 80
port orig. = xyz

port dest. = xyz
port orig. = 80

ACK positionné, port dest. = 80
port orig. = xyz

Client

séq. = n

séq. = n + 1

séq. = n + 2

Figure 6.19 – Poignée de mains en trois temps

1. Le nœud à l’origine de la demande de communication (appelé
communément le client) émet un segment TCP avec le bit
SYN positionné, le numéro de port du serveur avec lequel le
client veut communiquer dans le champ port de destination
de l’en-tête de segment, un numéro de port arbitraire dans le
champ port d’origine, les adresses d’origine et de destina-
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tion convenables dans l’en-tête de datagramme. Le numéro de
séquence est également initialisé dans l’en-tête de segment.

2. Le serveur répond en acquittant ce message au moyen d’un
segment dont le bit SYN est lui aussi positionné, le bit ACK
positionné également, les numéros de ports et adresses d’ori-
gine et de destination logiquement inversés par rapport au
segment du client.

3. Le client acquitte lui-même ce message en renvoyant un seg-
ment avec le bit ACK positionné. À l’issue de cet échange en
trois temps, client et serveur sont réputés s’être mis d’accord
sur les numéros de ports nécessaires à l’établissement de la
connexion.

Contrôle de flux et évitement de congestion

TCP est un protocole fiable de bout en bout au-dessus d’une
couche réseau non fiable, c’est-à-dire qu’il assure entre les deux
stations qui communiquent en dernière analyse le même type de
sûreté que le protocole de liaison de données assure entre deux
nœuds adjacents.

Pour garantir l’absence de pertes et le bon ordre de remise des
segments, TCP utilise un algorithme de fenêtre glissante tout à fait
similaire à celui que nous avons décrit pour la couche liaison de
données à la section 6.4.2, que nous vous invitons de ce fait à relire.

Nous avions dit en décrivant cet algorithme de fenêtre glissante
pour la couche 2 qu’il permettait un contrôle de flux, c’est-à-dire
l’adaptation mutuelle du débit d’émission de l’émetteur et du débit
de réception du récepteur par l’accroissement ou la diminution de la
largeur de la fenêtre d’émission. Cette propriété de l’algorithme est
bien sûr conservée si on l’applique à la couche transport, mais au
lieu d’agir sur une liaison entre deux nœuds adjacents, le contrôle
agit désormais à travers tout l’Internet. D’ailleurs, comme TCP
est un protocole bi-directionnel, chaque extrémité de la connexion
possède deux fenêtres, une en émission et une en réception.

L’application du contrôle de flux à grande distance produit des
effets puissants mais à manier avec précautions : les implémenta-
tions modernes de TCP utilisent la technique dite du « démarrage
lent » pour éviter de saturer un routeur surchargé à un point quel-
conque de l’itinéraire. La connexion démarre avec une fenêtre dont
la largeur correspond à un seul segment. Si tout se passe bien (les
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acquittements ACK arrivent), la fenêtre d’émission est élargie pro-
gressivement. Si une fois la connexion établie en régime permanent
des pertes de segments sont constatées, ce qui indique une conges-
tion quelque part sur le trajet, la fenêtre sera à nouveau rétrécie.

Cette politique de démarrage lent et d’évitement de la conges-
tion joue un rôle capital dans le fonctionnement général de l’Inter-
net, qui sinon se serait effondré depuis longtemps. L’inventeur de
cette innovation de grande valeur est Van Jacobson.

Nous invitons le lecteur à quelques secondes de réflexion ad-
mirative devant un dispositif technique conçu à l’origine pour une
centaine de nœuds et qui a pu résister à une croissance de six ou
sept ordres de grandeur, d’autant plus que cette conception n’était
le fait ni d’un grand groupe industriel ou financier, ni d’un gouver-
nement, ni d’un conglomérat de telles puissances. Mais peut-être
était-ce là le secret ?

6.6.2 UDP (User Datagram Protocol)
Nous ne dirons que peu de mots d’UDP, qui est un protocole

beaucoup plus simple que TCP. Il fournit au-dessus d’IP un pro-
tocole de transport non fiable, sans connexion et sans état. UDP
se contente de construire un datagramme doté, comme les seg-
ments TCP, d’un numéro de port d’origine et d’un numéro de port
de destination, et de l’encapsuler dans un datagramme IP. UDP
convient bien à l’envoi de messages brefs et isolés ; cela dit, il est
généralement considéré comme un protocole dangereux, à n’utili-
ser qu’en toute connaissance de cause. Notamment, dans un mode
sans connexion, il n’est pas possible de vérifier l’appartenance d’un
paquet à une connexion légitime.

De façon générale, les protocoles sans état sont des trous de
sécurité. C’est spécialement le cas des protocoles de niveau appli-
cation destinés au partage de fichiers en réseau, que ce soit NFS
pour Unix, Netbios pour Windows-xx, Appleshare pour MacOS.
Il est relativement facile d’introduire des paquets parasites dans
un échange de messages établi avec ces protocoles, et ils sont par-
ticulièrement dangereux parce qu’ils exécutent des programmes à
distance par le protocole RPC (Remote Procedure Call), créent,
modifient et détruisent des fichiers, bref ils donnent accès à tous les
outils dont peut rêver un pirate sur une machine distante qu’il se
propose d’attaquer.
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6.7 Les téléphonistes contre-attaquent : ATM
La controverse entre les réseaux à commutation de circuits vir-

tuels comme X25 et les réseaux à commutation de paquets « pure »
comme TCP/IP a animé la décennie 1980. Les tenants de la pre-
mière technique, ainsi qu’il a été signalé ci-dessus, étaient les opé-
rateurs téléphoniques traditionnels, qui y voyaient un moyen de
préserver leur méthode de facturation du transport de données au
volume, cependant que les constructeurs de réseaux informatiques
en ressentaient les lourdeurs qui se répercutaient en rigidités in-
supportables. L’Internet et TCP/IP ont fini par l’emporter grâce à
la facilité de déploiement que leur conféraient la commutation de
paquets associée aux protocoles de routage dynamique.

Les années 1990 ont vu une contre-attaque de grande envergure
des téléphonistes sous les espèces d’ATM (Asychronous Transfer
Mode). ATM ressuscite la commutation de circuits selon un proto-
cole conçu par un centre de recherche de France Télécom, normalisé
par l’UIT (Union Internationale des Télécommunications) et implé-
menté avec des moyens considérables.

Comme X25, l’architecture ATM comporte des aspects qui re-
lèvent de couches différentes du modèle OSI :

— couche 2 : format des données transmises au support phy-
sique, dont les différentes variétés sont spécifiées dans le
protocole ;

— couche 3 : établissement d’un circuit virtuel, qui fixe le ou
les itinéraires possibles de bout en bout ;

— couche 4 : contrôle de flux de bout en bout.
Cette confusion des couches nuit à l’adoption d’un protocole.

Une des clés du succès de TCP/IP, c’est que les protocoles de couche
3 et 4 (IP, TCP, UDP...) sont totalement indépendants du support
physique et de la couche de liaison de données sous-jacents. Avec
X25 ou ATM, vous ne choisissez pas seulement un protocole, mais
aussi une technologie de réseau, et en fin de compte un fournisseur
de services réseau, c’était d’ailleurs le but poursuivi, il aurait peut-
être été atteint en situation de monopole fort des téléphonistes,
mais aujourd’hui ATM est globalement un échec même si certains
opérateurs télécom l’utilisent encore dans leurs réseaux internes.

ATM fournit un service non fiable et connecté de transmission
de datagrammes sur un circuit virtuel. Le terme datagramme si-
gnifie que le flux de bits transmis par le protocole est découpé en
paquets acheminés indépendamment les uns des autres. Par non
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fiable nous entendons que le protocole ne fournit aucune garantie
de remise des datagrammes ni aucun contrôle d’erreur. Le caractère
connecté d’ATM est en fait discutable : certes il y a établissement de
circuit virtuel, mais le protocole ne maintient aucune information
d’état sur une transmission de données en cours.

Les datagrammes d’ATM s’appellent des cellules et ont une
taille fixe de 48 octets de données (oui, c’est minuscule) auxquels
s’ajoutent 5 octets d’information de contrôle, dont un numéro de
chemin virtuel sur 12 bits et un numéro de circuit virtuel sur 16
bits, soit 53 octets au total.

La conjonction du mode non fiable et du circuit virtuel peut
sembler paradoxale : X25 était fiable et connecté. En fait le circuit
virtuel a deux rôles : éviter de placer dans chaque cellule une in-
formation complète d’origine et de destination (il ne resterait plus
guère de place pour les données utiles), et maintenir des paramètres
de qualité de service, essentiellement débit et isochronie. Préférer
le débit à la fiabilité des données, c’est une attitude de téléphoniste
ou de télévidéaste : une cellule corrompue dans une conversation
téléphonique ou une image, ce n’est pas grave. Mais une cellule
corrompue dans une transmission de données, c’est tout le message
à retransmettre, et comme les cellules ne contiennent aucune infor-
mation qui permette de les identifier, il faut retransmettre toute
la transaction, éventuellement un grand nombre de cellules. Le nu-
méro de circuit virtuel est fixé lors d’une procédure d’appel qui
recourt à des cellules au format particulier, dites de signalisation,
comme avec X25.

Beaucoup des idées élaborées pour permettre à ATM de gérer
des communications avec des qualités de services diverses, appro-
priées à des applications telles que le transport de la voix et de
l’image, ou le contrôle en temps réel de dispositifs matériels (ma-
chines, robots, dispositifs de sécurité), ont trouvé leur chemin dans
les recherches actuelles sur le développement de TCP/IP.

6.8 Promiscuité sur un réseau local
Lorsqu’il est question de sécurité du réseau, on pense le plus

souvent à la protection contre les attaques en provenance de l’In-
ternet. Or, négliger les attaques en provenance de l’intérieur par
le réseau local (Local Area Network, LAN) serait s’exposer à des
menaces qui deviennent de jour en jour plus réelles avec le déve-
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loppement du nomadisme et des réseaux sans fil, et qui d’ailleurs
existaient de tout temps. De ce point de vue nous pouvons dire
que les réseaux sans fil ne produisent aucune menace qui n’ait déjà
existé, ils ne font que susciter la prise de conscience des risques qui
en résultent, et bien sûr en accroître l’intensité.

Nous allons le voir, il règne sur un réseau local une véritable
promiscuité, au sens où un utilisateur mal intentionné dispose de
moyens d’accès aux communications qui ne lui sont pas destinées.

6.8.1 Rappel sur les réseaux locaux
On nomme habituellement réseau local une infrastructure de

couche 2 (liaison de données) qui dessert un bâtiment ou un campus.
Une telle infrastructure comporte en général, outre le câblage, des
répéteurs, des commutateurs et des bornes d’accès pour réseaux
sans fil, mais pas de routeur, hormis celui qui relie le réseau local
à l’Internet. C’est le schéma classique de l’équipement d’un site
d’entreprise.

Nous n’évoquerons ici que les réseaux locaux définis par la
norme IEEE 802.3, plus communément nommés Ethernet, puisque
les autres types de réseaux définis par ce groupe de normes ne
sont plus guère utilisés. Disons tout de suite que les réseaux sans fil
802.11 (dits Wi-Fi) reposent par bien des points sur les mêmes prin-
cipes techniques que 802.3, notamment pour leurs caractéristiques
significatives du point de vue de la sécurité.

La norme 802.3 décrit des réseaux où toutes les stations par-
tagent un support physique unique ; à l’origine il s’agissait d’un
câble coaxial sur lequel toutes les stations étaient branchées en émis-
sion comme en écoute (câblage dit 10Base5), puis apparurent des
répéteurs (hubs) auxquels les stations étaient reliées par des paires
téléphoniques torsadées (câblage dit 10BaseT), mais toutes les don-
nées circulant sur le réseau atteignaient toutes les stations. Au-
jourd’hui la plupart des réseaux utilisent un câblage 100BaseT ou
1 000BaseT en étoile autour de commutateurs (switches), qui sont
des répéteurs « intelligents » capables d’« apprendre » sur quelle
branche de l’étoile se trouve telle station, ce qui leur permet d’éta-
blir des liaisons point à point et améliore ainsi considérablement la
sécurité des communications. On peut dire que les réseaux 802.11
font revivre la première époque d’Ethernet 802.3, où toutes les sta-
tions accédaient au même support physique et pouvaient, de ce fait,
recevoir toutes les données échangées sur ce support.



Promiscuité sur un réseau local 228

Une autre conséquence du partage du support physique par
toutes les stations, c’est que deux stations peuvent essayer
d’émettre simultanément, avec pour résultat ce que l’on appelle une
collision, qui provoquera le brouillage temporaire des communica-
tions. Pour résoudre ce problème, les stations d’un réseau 802.3
mettent en œuvre le protocole dit Carrier Sense Multiple Access
with Collision Detection (CSMA-CD), ou accès multiple par écoute
de la porteuse, avec détection de collision. De leur côté, les réseaux
802.11 ont recours au protocole Carrier Sense Multiple Access with
Collision Avoidance (CSMA-CA), analogue à CSMA-CD, mais avec
évitement des collisions, parce que sur un réseau sans fil les colli-
sions ne peuvent pas toujours être détectées, du fait que chaque
station ne « voit » pas forcément toutes les autres.

Vocabulaire : La porteuse
Les systèmes de transmission électro-magnétiques, avec ou sans fil, pro-

cèdent souvent par l’émission d’une onde sur une fréquence constante, le
signal étant réalisé par une modification de cette fréquence, ou sa modu-
lation. L’onde de fréquence constante est appelée la porteuse (carrier en
anglais).

6.8.2 Réseaux locaux virtuels (VLAN)
Les réseaux locaux virtuels (Virtual LAN, VLAN) sont apparus

en 1995, avec les commutateurs 802.3. Il s’agit donc d’un disposi-
tif de couche 2 (liaison de données), en pratique Ethernet. L’idée
est la suivante : il peut être tentant, notamment pour des raisons
de sécurité, de regrouper les stations d’un groupe de personnes qui
travaillent dans la même équipe sur un réseau local qui leur sera
réservé, séparé des réseaux des autres équipes. Mais si les membres
des différentes équipes sont dispersés dans différents bâtiments et
mélangés avec les autres groupes, adapter le câblage physique à l’or-
ganisation peut se révéler coûteux et malcommode, d’autant plus
que la répartition géographique des membres de chaque équipe peut
changer. On a donc recherché des moyens de créer, sur une infra-
structure parfois complexe, des réseaux locaux virtuels, qui iso-
leraient logiquement les communications propres à un groupe de
stations, lequel partagerait tout ou partie d’un même support phy-
sique avec d’autres groupes. En somme il s’agit de faire au niveau
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de la couche 2 (liaison de données) ce que les VPN (voir page 259)
font au niveau de la couche 3 (réseau).

Après quelques errements, les VLAN ont été normalisés en 1998
par la norme 802.1Q, qui a nécessité une modification du format de
la trame Ethernet afin de lui ajouter 4 octets, dont 12 bits consti-
tuent une étiquette (tag) destinée à identifier les trames qui appar-
tiennent à tel ou tel réseau local virtuel. Les commutateurs mo-
dernes sont programmés pour tenir compte de ces étiquettes, et
pour n’acheminer les trames que vers des destinations qui appar-
tiennent au VLAN désigné par leur étiquette.

Ce sont les commutateurs qui jouent le rôle principal dans la ges-
tion des VLAN : le premier commutateur que rencontre une trame
lui affecte une étiquette, qui déterminera son VLAN, et, partant,
son destin.

Un lien physique partagé par plusieurs VLAN est nommé trunk
dans le jargon des VLAN, ou parfois channel dans la terminologie
du constructeur Cisco.

Il est de bonne politique que le routeur de sortie du réseau vers
l’Internet appartienne à tous les VLAN, ou du moins à tous ceux
dont les stations doivent pouvoir atteindre l’Internet. Exclure ce
routeur d’un VLAN est un bon moyen d’interdire aux utilisateurs
de ce VLAN de naviguer sur l’Internet.

Les VLAN peuvent être utiles en termes de sécurité, par
exemple en limitant la promiscuité sur un réseau local. Une ap-
plication assez répandue et commode de ce procédé consiste, sur
un campus ou au sein d’une entreprise, à créer pour accueillir les
ordinateurs portables des visiteurs extérieurs un VLAN où ils seront
confinés, ce qui évitera qu’ils puissent accéder aux serveurs internes,
ou qu’ils répandent dans l’entreprise les virus dont ils pourraient
être infectés, tout en ayant la possibilité d’accéder à l’Internet ou
à toute autre ressource qui leur aura été autorisée.

6.8.3 Sécurité du réseau de campus : VLAN ou VPN ?
Nous venons de voir que les VLAN permettaient d’améliorer

la sécurité d’un réseau local en cloisonnant le trafic réseau par la
réservation à chaque équipe ou entité fonctionnelle d’un réseau privé
virtuel, et en limitant ainsi la promiscuité des données.

Une autre façon de segmenter le réseau est de recourir à des
routeurs. Nous avons vu ci-dessus (page 259) que les réseaux pri-
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vés virtuels (VPN) permettaient d’établir des tunnels chiffrés entre
deux stations quelconques sur l’Internet.

Comment choisir entre ces deux types de solution ?
Les VLAN, par définition, ne peuvent être déployés qu’au sein

d’un même réseau local. Dans ce rôle ils sont très commodes : une
fois les commutateurs configurés, tout est automatique. Les com-
mutateurs sont plus faciles à configurer que les routeurs, ils sont
aussi moins chers et plus rapides. Les réseaux commutés demandent
moins de compétences humaines et moins d’investissements maté-
riels que les réseaux routés. Leur inconvénient principal, malgré la
promulgation de la norme 802.1Q, est de reposer le plus souvent
sur des recettes de configuration propres à chaque constructeur,
qui violent plus ou moins ouvertement le principe de l’indépen-
dance protocolaire : les VLAN mélangent des fonctions qui relèvent
de la couche 2 avec des fonctions de couche 3. Cette confusion n’a
pas que des inconvénients théoriques, elle peut conduire à l’édifica-
tion d’un réseau à la topologie confuse dont l’évolution ultérieure
et la maintenance seront difficiles.

Le routage est une technique qui repose sur des bases théo-
riques et conceptuelles solides et acceptées par tous. En fait, il est
la pierre angulaire de l’Internet. Les protocoles privés créés naguère
par certains constructeurs cèdent de plus en plus souvent la place
aux protocoles normalisés et documentés, tel OSPF (Open Shortest
Path First) 20. Un réseau privé virtuel peut s’étendre, virtuellement
donc, à l’ensemble de la planète, mais il est aussi tout à fait pos-
sible de construire pour un coût marginal un minuscule VPN entre
mon ordinateur au bureau, celui de mon domicile et mon ordinateur
portable connecté à un point d’accès sans fil.

En pratique
Nous pensons qu’il est très intéressant, sur un campus, de créer un

VLAN pour accueillir les ordinateurs portables des visiteurs auxquels on
ne veut pas accorder de droits, mais qui doivent quand même travailler et
accéder à l’Internet, ne serait-ce que pour communiquer avec leurs bases.
Pour tout autre usage, avant de créer un VLAN il faut se demander si
le routage ne serait pas une solution plus satisfaisante. On pourra aussi

20 Open Shortest Path First (OSPF) est un protocole de routage basé sur un
algorithme de recherche de parcours dans un graphe dû à Dijkstra.
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regarder le protocole VXLAN, mentionné à la section 10.3.6 p. 347, cf.
aussi la note 6 p. 261.

6.9 Client–serveur ou pair à pair (peer to
peer) ?

Tous les usages du réseau que nous avons évoqués jusqu’ici re-
posent plus ou moins explicitement sur le modèle client-serveur :
un navigateur WWW (le client) demande une page à un serveur
WWW, un logiciel de messagerie (le client) relève sa boîte à lettres
sur un serveur par le protocole POP (Post Office Protocol), etc.

Ce modèle a de nombreux usages fort utiles, mais il ne saurait
prétendre à l’universalité et il donne une vision restreinte des pos-
sibilités du réseau. En concentrant une grande partie du trafic sur
des nœuds spécialisés, les serveurs, il crée une absence de fluidité
et un risque de congestion. On peut imaginer un autre modèle où
chaque nœud serait connecté, plus ou moins virtuellement, à tous
les autres. Si un tel modèle était inimaginable il y a vingt ans pour
des raisons techniques, la croissance continue des débits des réseaux,
des tailles mémoire et des puissances de calcul disponibles permet
d’imaginer que chaque ordinateur personnel au domicile de chacun
devienne à la fois serveur et client. Je peux ainsi héberger mon
propre site WWW sur ma machine, avec mes photos de vacances
et mes articles. Mon fournisseur d’accès à l’Internet ne me donne
pas d’adresse IP fixe ? Qu’à cela ne tienne, des bienfaiteurs de l’hu-
manité comme dyndns.org fournissent (et gratuitement de surcroît)
un service de noms de domaines dynamiques qui ajuste périodique-
ment l’adresse IP qui correspond à mon nom de domaine à moi, ce
qui permet à mes « clients » d’atteindre mon site à tout moment.

Ce qui est décrit ci-dessus est encore trop artisanal : il faut pu-
blier des services afin que chacun puisse y accéder sans avoir à
connaître leur localisation a priori. C’est le pas franchi par des pro-
tocoles comme Napster ou Gnutella, auxquels chacun peut s’abon-
ner, et devenir serveur même à son insu (ce qui n’a pas forcément
que des avantages, par exemple lorsque le serveur en question abrite
des données que la loi interdit de divulguer parce qu’elles sont pro-
tégées par le droit d’auteur ou tout simplement interdites). L’infor-
mation sur les services disponibles circule de proche en proche.

dyndns.org
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Une autre direction importante où les protocoles peer to peer
joueront un rôle est celui du « calcul en grille » (grid computing) :
un calcul important, tel que ceux effectués en dynamique des fluides
ou en analyse de génomes, est partagé entre de nombreux ordina-
teurs en réseau. Si le problème et ses données sont faciles à subdi-
viser, les communications entre les nœuds de calcul ne seront pas
intenses, mais si ce n’est pas le cas le réseau sera soumis à une
forte charge et la coordination par un serveur central constituerait
un goulot d’étranglement insupportable. L’utilisation d’algorithmes
distribués et de communications bilatérales indépendantes entre les
nœuds s’imposera. Ces questions sont encore du domaine de la re-
cherche, même si des réalisations opérationnelles existent déjà.

Signalons que ce type de service a eu un précurseur très précoce,
le protocole NNTP de diffusion des News du réseau (des forums, en
fait), qui est doté de primitives dont les noms disent tout : ihave,
post, takethis, check. Les articles des News se propagent de site
en site, sans arbre hiérarchique prédéfini.

6.10 Versatilité des protocoles pair à pair
6.10.1 Définition et usage du pair à pair

Un grand coup de hache sur le modèle client-serveur est venu des
protocoles peer to peer (souvent abrégés en P2P), ce que Wikipedia
propose de traduire en français pas pair à pair et décrit ainsi :

« P2P désigne un modèle de réseau informatique dont les élé-
ments (les nœuds) ne jouent pas exclusivement les rôles de client
ou de serveur mais fonctionnent des deux façons, en étant à la fois
clients et serveurs des autres nœuds de ces réseaux, contrairement
aux systèmes de type client-serveur, au sens habituel du terme.

...
Les réseaux P2P permettent de communiquer et de partager

facilement de l’information - des fichiers le plus souvent, mais éga-
lement des calculs, du contenu multimédia en continu (streaming),
etc. sur Internet. Les technologies P2P se sont d’ailleurs montrées
si efficaces que le P2P est considéré par certains comme l’étape
ultime “de la liberté et de la démocratie” sur Internet. Sans aller
jusque là, on considère souvent que le P2P porte (et est porté par)
une philosophie de partage et un profond esprit communautaire. »
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Pour une présentation des évolutions récentes on pourra consul-
ter la communication de Franck Cappello aux journées JRES 2005
[26].

Ces protocoles pair à pair sont utilisés massivement par les in-
ternautes équipés d’une connexion à heut débit pour échanger des
fichiers aux contenus musicaux ou cinématographiques, au titre de
ce que le droit français nomme la copie privée, et le droit américain
fair use.

Les industries du disque et du cinéma n’étaient pas préparées
à cette extension de la copie privée, à laquelle elles ont réagi prin-
cipalement par le recours à la loi. Les premiers protocoles P2P, tel
Napster, comportaient un serveur central qui recueillait et distri-
buait les adresses des participants, ce qui a permis aux industriels
d’engager contre le propriétaire de ce serveur des actions en justice
et d’obtenir sa fermeture.

Instruit par cette expérience, les protocoles pair à pair contem-
porains, tels KaZaA, Skype ou eMule, ne comportent pas de serveur
central, ce qui oblige les entreprises qui souhaiteraient poursuivre
leurs utilisateurs à les identifier un par un.

6.10.2 Problèmes à résoudre par le pair à pair
Les nœuds des systèmes pair à pair, quasiment par définition,

sont des ordinateurs situés à la périphérie de l’Internet, et qui sont
le plus souvent soit des machines personnelles dans un domicile
privé, soit des postes de travail individuels au sein d’une entreprise
qui n’a pas vraiment prévu qu’ils soient utilisés pour du pair à pair,
voire qui essaye de l’interdire. Les conséquences techniques de cette
situation sont les suivantes :

— les ordinateurs concernés sont souvent éteints ;
— ils n’ont souvent pas d’adresse IP permanente ;
— voire pas d’adresse routable (adresses dites « NAT (Network

Address Translation) »).
Il faudra malgré ce contexte d’amateurisme que tous les nœuds

puissent être à la fois clients et serveurs, qu’ils puissent commu-
niquer directement deux à deux, et que chacun en fonction de ses
capacités contribue au fonctionnement général de l’infrastructure.
Il faut qu’un nœud qui rejoint le réseau puisse découvrir ceux qui
offrent les ressources qui l’intéressent, selon le schéma de la figure
6.20.
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Figure 6.20 – Un poste client tente de rejoindre une communauté de pairs.

Pour surmonter les difficultés énumérées plus haut et atteindre
ces objectifs, un système pair à pair comporte quatre composants
fondamentaux :

1. une passerelle, qui publie l’adresse IP d’autres nœuds et per-
met à l’utilisateur de choisir une communauté au sein de la-
quelle il va échanger des données, comme représenté par la
figure 6.21 ;

2. un protocole réseau pour l’établissement des connexions et
l’exécution des opérations de transport de données ; un élé-
ment crucial de ce protocole sera bien sûr son aptitude au
franchissement de coup-feu, comme indiqué par la figure 6.22 ;
en effet la communication pair à pair serait impossible dans
le respect des règles de filtrage qu’imposent la plupart des
réseaux, notamment en entreprise ;

3. un système de publication de services et d’annonces de res-
sources disponibles, qui permet à chacun de contribuer à
l’œuvre commune ;

4. un système, symétrique du précédent, de recherche de res-
sources, qui permet de trouver ce que l’on cherche, tel mor-
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Figure 6.21 – Une passerelle (gateway) va permettre au nouvel arrivant de
découvrir l’adresse IP d’un membre déjà connecté.

Figure 6.22 – Ici deux nœuds confinés par des coupe-feux (firewalls) essaient
néanmoins de construire une voie de communication entre eux, mais le procédé

retenu est rudimentaire et peu efficace.

ceau de musique ou tel film, ou le chemin d’accès à tel télé-
phone réseau.
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7.1 Protection
Un système d’exploitation digne de ce nom doit comporter des

dispositifs et des procédures de protection des objets qu’il permet
de manipuler. Les objets à protéger appartiennent à deux grandes
catégories : les objets persistants tels que les fichiers, et les objets
éphémères créés en mémoire pendant l’exécution d’un processus et
destinés à disparaître avec lui. Les objets matériels, tels que pé-
riphériques physiques, interfaces réseau, etc., sont assimilés à des
objets persistants. La protection consiste à empêcher qu’un utili-
sateur puisse altérer un fichier qui ne lui appartient pas et dont le
propriétaire ne lui en a pas donné l’autorisation, ou encore à em-
pêcher qu’un processus en cours d’exécution ne modifie une zone
mémoire attribuée à un autre processus sans l’autorisation de celui-
ci, par exemple.

De façon très générale la question de la protection d’un objet
informatique se pose dans les termes suivants, inspirés des concepts
mis en œuvre par le système Multics :

— Un objet a un propriétaire identifié, généralement l’utilisa-
teur qui l’a créé. Un objet est, sous réserve d’inventaire,
soit un fichier, soit un processus, soit une structure de don-
nées éphémère créée en mémoire par un processus, mais nous
avons vu à la section 5.4 que pour Multics tous ces objets
sont en fin de compte des segments ou sont contenus dans
des segments de mémoire virtuelle.

— Le propriétaire d’un objet peut avoir conféré à lui-même et à
d’autres utilisateurs des droits d’accès à cet objet. Les types
de droits possibles sont en général les suivants (on peut en
imaginer d’autres) :
— droit d’accès en consultation (lecture) ;
— droit d’accès en modification (écriture, destruction, créa-

tion) ;
— droit d’accès en exécution ; pour un programme exécu-

table la signification de ce droit est évidente ; pour un
répertoire de fichiers ce droit confère à ceux qui le pos-
sèdent la faculté d’exécuter une commande ou un pro-
gramme qui consulte ce répertoire ;
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— droit de blocage, par exemple pour un processus en cours
d’exécution ou éligible pour l’exécution.

— À chaque objet est donc associée une liste de contrôle d’accès
(access control list) qui énumère les utilisateurs autorisés et
leurs droits.

— Avant toute tentative d’accès à un objet par un utilisateur,
l’identité de cet utilisateur doit être authentifiée.

— Pour qu’un utilisateur ait le droit d’exécuter une action sur
un objet, et dans un système informatique cette action est
perpétrée par l’entremise d’un processus, il faut en outre
que le processus en question possède le pouvoir voulu. Le
pouvoir est un attribut d’un processus, il peut prendre des
valeurs qui confèrent à ce processus des privilèges plus ou
moins étendus. Jusqu’à présent nous n’avons rencontré que
deux valeurs possibles de pouvoir : le mode superviseur et le
mode utilisateur, mais nous allons voir que certains systèmes
ont raffiné la hiérarchie des valeurs de pouvoir.

— La valeur du pouvoir d’un processus peut changer au cours
de son exécution. Ainsi un processus qui se déroule dans
un mode utilisateur peut faire une demande d’entrée-sortie,
ce qui nécessite le mode superviseur. Ceci sera résolu, sous
Unix par exemple, par le mécanisme de l’appel système, qui
transfère le contrôle, pour le compte du processus utilisa-
teur, à une procédure du noyau qui va travailler en mode
superviseur.

— Nous définirons la notion de domaine de protection dans
lequel s’exécute un processus comme l’ensemble des objets
auxquels ce processus a accès et des opérations qu’il a le
droit d’effectuer sur ces objets. Lorsqu’un processus change
de valeur de pouvoir, il change par là même de domaine de
protection.

Les dispositifs et procédures de protection du système d’exploi-
tation vont consister à faire respecter les règles qui découlent des
droits et pouvoirs énumérés ci-dessus et à empêcher leur violation.
La protection au sens où nous allons l’étudier dans ce chapitre ne
consiste pas à empêcher les erreurs humaines, les défaillances tech-
niques ou les actes de malveillance qui pourraient faire subir à un
objet un sort non désiré, mais seulement à empêcher leur incidence
sur les objets en question. Il faut protéger les données et les pro-
cessus d’un utilisateur contre les processus des autres utilisateurs,
protéger le fonctionnement du système contre les processus des uti-
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lisateurs et vice-versa, enfin protéger l’un de l’autre les processus
d’un même utilisateur.

La qualité des dispositifs et procédures de protection fait la sû-
reté d’un système d’exploitation. On conçoit notamment aisément
que le contrôle des droits et des pouvoirs doive être à l’abri des ma-
nipulations d’utilisateurs désireux sans légitimité d’accroître leurs
privilèges, ce qui signifie que les procédures de contrôle doivent
s’exécuter avec le mode de pouvoir le plus grand et les droits les
plus étendus, inaccessibles aux simples utilisateurs. Cette réflexion
de simple bon sens suffit à refuser le qualificatif « sûr » à tel système
d’exploitation qui comporte un système perfectionné de listes d’ac-
cès réalisé... en mode utilisateur, et pour lequel de surcroît l’iden-
tification des utilisateurs est facultative.

En effet, il va sans dire, mais disons-le : il ne sert à rien de
contrôler les droits et les pouvoirs du propriétaire d’un processus
si déjà son identité n’est pas raisonnablement certaine. Les procé-
dures d’identification et d’authentification des utilisateurs sont un
préalable à toute stratégie de protection.

7.1.1 Un parangon de protection : Multics
Dans le domaine de la protection, l’approche mise en œuvre par

le système Multics dès les années 1960 fait encore aujourd’hui figure
de référence exemplaire. Nous allons la décrire.

De même que les auteurs de Multics avaient accompli une percée
conceptuelle considérable et qui reste aujourd’hui à poursuivre en
réunissant les objets de mémoire et les fichiers dans un concept
unique de segment, ils ont aussi imaginé pour la protection une
approche et des concepts originaux et puissants que les systèmes
d’aujourd’hui redécouvrent lentement.

Les dispositifs de protection de Multics

Nous décrirons les dispositifs et procédures mis en œuvre dans
Multics pour assurer la protection des objets parce que, bien qu’an-
ciens, ils restent à ce jour de l’an 2018 une réalisation de référence.
Cette description doit beaucoup à celles de l’ouvrage collectif de
Crocus [37], Systèmes d’exploitation des ordinateurs et du livre de
Silberschatz et ses collègues [121] Principes appliqués des systèmes
d’exploitation.
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La protection sous Multics repose sur une structure dite « en
anneaux ». Chaque processus s’exécute dans un anneau, chaque an-
neau correspond à un niveau de privilèges. Multics offre huit an-
neaux numérotés de 0 à 7, l’anneau 0 procure les privilèges les plus
élevés, l’anneau 7 les moins élevés. L’anneau du processus courant
figure dans le mot d’état de programme (PSW, cf. section 2.5 p.
33).

Chaque segment (de mémoire volatile ou persistante), pour
chaque type d’accès (lecture, écriture, exécution si le segment
contient un programme ou un répertoire), appartient à un anneau.
Si un processus s’exécute dans un anneau de valeur inférieure ou
égale à l’anneau d’exécution d’un segment, par exemple, il peut
exécuter le programme contenu dans ce segment, sinon non.

À tout moment un processus peut changer d’anneau, sous le
contrôle du système d’exploitation évidemment, et ainsi acquérir
de façon temporaire ou définitive des privilèges supérieurs qui lui
ouvriront l’accès à de nouveaux segments.

0 1 2 3 4 5 6 7

Pouvoir croissant

Anneaux{Parenthèse d’écriture {Parenthèse de lecture

Figure 7.1 – Protection en anneaux sous Multics

Finalement il apparaît que les plus fidèles disciples de l’équipe
Multics furent les ingénieurs d’Intel. Depuis le modèle 80286 jus-
qu’à l’actuel Itanium les processeurs de la ligne principale d’Intel
disposent d’une gestion de mémoire virtuelle à adressage segmenté.
Aucun système d’exploitation implanté sur ces processeurs, que ce
soient ceux de Microsoft ou les Unix libres FreeBSD, NetBSD ou
Linux, ne tire parti de ce dispositif pour unifier les gestions de la
mémoire virtuelle et de la mémoire persistante (le système de fi-
chiers) ; les premiers sont contraints à la compatibilité avec leurs
ancêtres... et les Unix aussi.
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Les processeurs Intel disposent d’un système de protection à
quatre anneaux, typiquement destinés respectivement au noyau du
système pour l’anneau 0, aux fonctions auxiliaires du système pour
les anneaux 1 et 2, et aux programmes en mode « utilisateur » pour
l’anneau 3. Le VAX disposait aussi d’un tel système à quatre an-
neaux. Sur les Intel ces possibilités ne sont guère utilisées par les
systèmes d’exploitation. Les systèmes conventionnels comme Unix
possèdent un système d’anneaux dégradé à seulement deux anneaux
(le mode superviseur et le mode utilisateur) et un système de listes
d’accès dégradé avec pour chaque fichier des droits d’accès en lec-
ture, en écriture et en exécution pour trois ensembles d’utilisateurs :
le propriétaire du fichier, les membres de son groupe, tous les autres
utilisateurs. Linux utilise l’anneau 0 comme mode noyau et l’anneau
3 comme mode utilisateur et c’est tout. Ces systèmes plus rudimen-
taires ont (avaient ?) l’avantage d’être moins lourds.

7.2 Sécurité
7.2.1 Menaces, risques, vulnérabilités

La sécurité des systèmes informatiques (et de façon plus large
celle des systèmes d’information) est un vaste problème dont les
aspects techniques ne sont qu’une partie. Les aspects juridiques, so-
ciaux, ergonomiques, psychologiques et organisationnels sont aussi
importants, mais nous ne les aborderons pas ici. Nous laisserons
également de côté les aspects immobiliers de la sécurité, qui ne
doivent bien sûr pas être oubliés mais sont loin de notre propos.

Les problèmes techniques actuels de sécurité informatique dé-
coulent directement ou indirectement de l’essor des réseaux, qui
multiplie la quantité et la gravité des menaces potentielles. Ces
menaces entrent dans une des catégories suivantes : atteinte à la
disponibilité des systèmes et des données, destruction de données,
corruption ou falsification de données, vol ou espionnage de don-
nées, usage illicite d’un système ou d’un réseau, usage d’un système
compromis pour attaquer d’autres cibles.

Les menaces engendrent des risques : perte de confidentialité de
données sensibles, indisponibilité des infrastructures et des données,
dommages pour le patrimoine scientifique et la notoriété, coûts hu-
mains et financiers. Les risques peuvent se réaliser si les systèmes
menacés présentent des vulnérabilités.
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7.2.2 Principes de sécurité
La résorption des vulnérabilités repose sur un certain nombre de

principes et de méthodes que nous allons énumérer dans la présente
section avant de les décrire plus en détail.

Inutile de se préoccuper de sécurité sans avoir défini ce qui était
à protéger : en d’autres termes une organisation quelconque dési-
reuse de protéger ses systèmes et ses réseaux doit déterminer son
périmètre de sécurité, qui délimite l’intérieur et l’extérieur. Une fois
fixé ce périmètre, il faut aussi élaborer une politique de sécurité, en
d’autres termes décider ce qui est autorisé et ce qui est interdit.
À cette politique viennent bien sûr s’ajouter les lois et les règle-
ments en vigueur, qui s’imposent à tous. Et il faut bien sûr prendre
en considération la généralisation des ordinateurs portables, smart-
phones et autres tablettes, qui rendent le périmètre de sécurité très
poreux.

Ceci fait, il sera néanmoins possible de mettre en place les so-
lutions techniques appropriées à la défense du périmètre selon la
politique choisie. Mais déjà il est patent que les dispositifs tech-
niques ne pourront pas résoudre tous les problèmes de sécurité.

Les systèmes et les réseaux comportent des données et des
programmes que nous considérerons comme des ressources. Cer-
taines ressources sont d’accès public, comme par exemple un ser-
veur WWW, d’autres sont privées pour une personne, comme une
boîte à lettres électronique, d’autres sont privées pour un groupe de
personnes, comme l’annuaire téléphonique interne d’une entreprise.
Ce caractère plus ou moins public d’une ressource doit être traduit
dans le système sous forme de droits d’accès, comme nous l’avons
vu au début de ce chapitre.

Les personnes qui accèdent à une ressource non publique
doivent être identifiées ; leur identité doit être authentifiée ; leurs
droits d’accès doivent être vérifiés : à ces trois actions corres-
pond un premier domaine des techniques de sécurité, les méthodes
d’authentification, de signature, de vérification de l’intégrité des
données objet et d’attribution de droits.

La sécurité des accès par le réseau à une ressource protégée
n’est pas suffisamment garantie par la seule identification de leurs
auteurs. Sur un réseau local de type Ethernet où la couche de liai-
son de données fonctionne en diffusion il est possible à un tiers de
capter la transmission de données. Si la transmission a lieu à travers
l’Internet, les données circulent de façon analogue à une carte pos-
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tale, c’est-à-dire qu’au moins le facteur et la concierge y ont accès.
Dès lors que les données doivent être protégée, il faut faire appel
aux techniques d’un second domaine de la sécurité informatique : le
chiffrement.

Authentification et chiffrement sont indissociables : chiffrer sans
authentifier ne protège pas des usurpations d’identité (l’attaque
dite de type man in the middle), authentifier sans chiffrer laisse
la porte ouverte au vol de données. Mais ces deux méthodes de
sécurité ne suffisent pas, il faut en outre se prémunir contre les
intrusions destinées à détruire ou corrompre les données, ou à en
rendre l’accès impossible. Les techniques classiques contre ce risque
sont l’usage de coupe-feux (firewalls) et le filtrage des commu-
nications réseaux, qui permettent de protéger la partie privée d’un
réseau dont les stations pourront communiquer avec l’Internet sans
en être visibles. Entre le réseau privé et l’Internet les machines pu-
bliques seront placées dans une zone démilitarisée (DMZ), où elles
hébergeront par exemple le serveur WWW et le relais de messagerie
de l’entreprise. Ces machines exposées au feu de l’Internet seront
appelées bastions.

Certains auteurs considèrent que ces techniques de sécurité
par remparts, ponts-levis et échauguettes sont dignes du Moyen-
âge et leur préfèrent les systèmes de détection d’intrusion (IDS),
plus subtils. Cela dit, dans un paysage informatique où les micro-
ordinateurs prolifèrent sans qu’il soit réaliste de prétendre vérifier
la configuration de chacun, le filtrage et le coupe-feu sont encore
irremplaçables.

Nous allons examiner un peu plus en détail chacune de ces col-
lections de techniques, en commençant par la cryptographie parce
que les techniques de l’authentification en sont dérivées.

7.3 Chiffrement
Nous ne saurions tracer ici une histoire complète des codes se-

crets, pour laquelle le lecteur pourra se reporter au livre de Simon
Singh [122] par exemple. Tout ce qui est antérieur à 1970 a un in-
térêt essentiellement historique, bien que passionnant et riche d’en-
seignements, comme par exemple le rôle récemment mis en lumière
d’Alan Turing dans le déroulement de la Seconde Guerre mondiale,
évoqué dans la biographie d’Andrew Hodges [60].
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7.3.1 Chiffrement symétrique à clé secrète
De l’époque de Jules César à la fin des années 1970, un grand

nombre de systèmes de chiffrement ont été inventés, qui consistaient
à faire subir à un texte clair une transformation plus ou moins com-
plexe pour en déduire un texte inintelligible, dit chiffré. La trans-
formation repose sur deux éléments, une fonction mathématique
(au sens large) et une clé secrète. Seule une personne connaissant
la fonction et possédant la clé peut effectuer la transformation in-
verse, qui transforme le texte chiffré en texte clair. C’est la même
clé qui sert au chiffrement et au déchiffrement, et pour cette raison
elle doit rester secrète : nous décrirons plus loin des systèmes de
chiffrement asymétrique, qui utilisent des clés différentes pour le
chiffrement et le déchiffrement, ce qui permet de rendre publique
la clé de chiffrement, puisque’elle ne permet pas le déchiffrement.

La science de l’invention des codes secrets s’appelle la crypto-
graphie. La science, adverse, du déchiffrement de ces codes est la
cryptanalyse. Si le cryptanalyste ignore tout de la fonction de chif-
frement et de la clé il aura le plus grand mal à déchiffrer, mais un
bon code doit résister à la découverte de sa fonction de chiffrement
tant que la clé reste secrète.

Une bonne fonction de chiffrement doit éviter de prêter le flanc
à la cryptanalyse. Ainsi le code de César, qui reposait sur une
simple transposition circulaire des lettres de l’alphabet, est très
facile à décoder par l’analyse des fréquences des lettres dès lors
que l’on sait dans quelle langue a été écrit le message. Un bon code
doit aussi chiffrer de façons différentes deux occurrences successives
d’un même texte dans le corps du message pour éviter que la dé-
tection d’une répétition ne fournisse des indices au cryptanalyste.
La connaissance simultanée d’un texte clair et de sa version chif-
frée, comme dans le cas de Champollion et de la pierre de Rosette,
est bien sûr une aubaine pour le décodeur, comme l’occurrence de
noms propres etc.

7.3.2 Naissance de la cryptographie informatique : Alan
Turing

L’invention de l’ordinateur a bien sûr donné un essor considé-
rable à la cryptographie et à la cryptanalyse. Ce n’est d’ailleurs
pas un hasard si le créateur du modèle théorique de l’ordinateur,
Turing, a été aussi pendant la guerre un formidable concepteur
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de machines à déchiffrer les codes allemands chiffrés par les au-
tomates Enigma. Les machines de Turing, appelées « Bombes »,
étaient fondées sur une réalisation originale du logicien polonais
Marian Rejewski. La courbe qui trace le succès des attaques de
sous-marins allemands contre les convois transatlantiques qui ache-
minaient les fournitures américaines à la Grande-Bretagne subit des
fluctuations importantes qui correspondent au délai à l’issue duquel
l’équipe d’Alan Turing à Bletchley Park parvenait à déchiffrer plus
ou moins parfaitement le code allemand après un changement de
combinaison des Enigma. Lorsque l’on sait l’importance militaire
qu’ont eue ces fournitures, on ne saurait sous-estimer la contribu-
tion de Turing à la victoire alliée.

7.3.3 Data Encryption Standard (DES)
Le premier système de chiffrement informatique normalisé fut

créé par un Allemand émigré aux États-Unis en 1934, Horst Feistel.
Sa nationalité et son métier de cryptographe lui valurent quelques
difficultés avec la National Security Agency (NSA), désireuse avant
tout de garder la maîtrise des moyens de chiffrement et de pouvoir
percer les codes utilisés par des personnes privées. Finalement il
mit ses compétences au service d’IBM, pour qui il développa au
début des années 1970 le cryptosystème Lucifer, base du futur Data
Encryption Standard (DES).

Le DES repose sur les principes suivants : le texte clair est codé
en numération binaire et découpé en blocs de 64 bits. Chaque bloc
est découpé en demi-blocs dont les bits subissent des permutations
complexes, puis les demi-blocs sont additionnés et soumis à d’autres
transformations. L’opération est recommencée seize fois. La fonc-
tion de transformation comporte des variations en fonction de la
clé, qui est un nombre arbitraire choisi par les utilisateurs du code.
Le nombre de valeurs possibles pour la clé détermine le nombre de
façons différentes dont un message peut être chiffré. L’émetteur du
message secret le chiffre selon l’algorithme DES au moyen de la clé,
le destinataire applique la fonction inverse avec la même clé pour
le déchiffrer.

La NSA a obtenu que la normalisation du DES en 1976 com-
porte une limitation de la taille de la clé à 56 bits, ce qui correspond
à 1017 valeurs possibles. Aujourd’hui cette valeur est notoirement
trop faible, et l’on utilise le triple DES, avec une longueur de clé de
112 bits.
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La nouvelle norme AES utilise des clés de 128, 192 et 256 bits.
La mise en concurrence pour AES a été lancée le 2 janvier 1997
et le choix de la solution a eu lieu le 3 octobre 2000. C’est l’algo-
rithme Rijndael développé par Joan Daemen et Vincent Rijmen de
l’Université catholique de Leuven qui a été retenu.

La postérité actuelle du DES procure un chiffrement qui peut
être considéré comme robuste, à condition que soit résolu le pro-
blème crucial de tous les systèmes qui reposent sur une clé secrète
utilisée aussi bien pour le chiffrement que pour le déchiffrement :
les participants doivent s’échanger des clés de façon secrète, ce qui
n’est pas simple.

7.3.4 Diffie, Hellman et l’échange de clés
Si Alex veut entretenir une correspondance secrète avec Béré-

nice, ils peuvent convenir de chiffrer leurs messages avec un proto-
cole tel que le triple DES, que nous venons de présenter. Ce proto-
cole présente toutes les garanties de robustesse, mais il faudra que
Bérénice et Alex conviennent d’une clé secrète : pour ce faire, ils
devront se rencontrer, ce qui peut être impossible, ou se communi-
quer la clé par la poste : dans les deux cas, l’instant de l’échange
est celui dont un espion peut profiter pour dérober leur secret et
ainsi réduire à néant la sûreté de leurs communications. C’est le
problème de l’échange de clés.

Le problème de l’échange de clés

Depuis des siècles le problème de l’échange des clés était consi-
déré comme un inconvénient naturel du chiffrement. Les ambas-
sades et les états-majors y consacraient des efforts importants, que
les espions s’efforçaient de déjouer.

Avec l’utilisation de l’ordinateur et des télétransmissions, et la
dématérialisation de l’information qu’ils autorisent, le problème se
pose différemment. Dans les années 1970 un chercheur indépendant
et excentrique, Whitfield Diffie, réfléchissait au moyen pour deux
utilisateurs du réseau ARPANET d’échanger des courriers électro-
niques chiffrés sans se rencontrer physiquement. En 1974 il donna
une conférence sur le sujet au centre de recherche Thomas J. Wat-
son d’IBM à Yorktown Heights (déjà le lieu de travail de Horst
Feistel), et là il apprit que Martin Hellman, professeur à l’Univer-
sité Stanford à Palo Alto, avait déjà donné une conférence sur le
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même sujet. Aussitôt il prit sa voiture et traversa le continent pour
rencontrer Hellman.

Diffie et Hellman cherchaient une méthode pour convenir d’un
secret partagé sans le faire circuler entre les participants ; en
d’autres termes une fonction mathématique telle que les partici-
pants puissent échanger des informations dont eux seuls puissent
déduire le secret. Les caractéristiques souhaitées d’une telle fonc-
tion sont la relative facilité de calcul dans le sens direct, et la quasi-
impossibilité de calculer la fonction réciproque. Ainsi, si s est le
secret en clair, F la fonction de chiffrement, c le secret chiffré, D la
fonction de déchiffrement, il faut que c = F(s) soit facile à calculer,
mais s = D(c) pratiquement impossible à calculer pour tout autre
que les participants, au prix de quel stratagème, c’est ce que nous
allons voir.

Fondements mathématiques de l’algorithme Diffie-Hellman

La solution repose sur un chapitre de l’arithmétique très utilisé
par les informaticiens, l’arithmétique modulaire, ou l’arithmétique
basée sur les classes d’équivalence modulo n.

Considérons l’ensemble des entiers relatifs Z muni de l’addition
et de la multiplication. La division entière de a par b que nous
avons apprise à l’école primaire y est définie ainsi :

a÷ b → a = b× q+ r

où q est le quotient et r le reste de la division. Ainsi :

13÷ 3 → 13 = 3× 4+ 1

Intéressons-nous maintenant à tous les nombres qui, divisés par
un nombre donné n, par exemple 3, donnent le même reste r. Nous
avons déjà trouvé un nombre, 13, pour lequel r = 1, donnons-en
quelques autres :

1÷ 3 → 3× 0+ 1

4÷ 3 → 3× 1+ 1

7÷ 3 → 3× 2+ 1

10÷ 3 → 3× 3+ 1

13÷ 3 → 3× 4+ 1

16÷ 3 → 3× 5+ 1
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On dit que ces nombres constituent une classe d’équivalence,
et qu’ils sont tous équivalents à 1 mod 3 (prononcer « un modulo
trois ») :

4 ≡ 1 mod 3

7 ≡ 1 mod 3

. . .

On construit de la même façon une classe des nombres équiva-
lents à 0 mod 3, qui contient −6,−3, 0, 3, 6, 9, 12, . . ., et une classe
des nombres équivalents à 2 mod 3, avec −7,−4,−1, 2, 5, 8, 11, . . ..

On peut définir une addition modulaire, par exemple ici l’addi-
tion mod 3 :

4+ 7 (mod 3) = (4+ 7) mod 3

= 11 mod 3

= 2 mod 3

On démontre (exercice laissé au lecteur) que l’ensemble des
classes d’équivalence modulo n muni de cette relation d’équivalence
(réflexive, transitive) et de cette addition qui possède les bonnes
propriétés (associative, commutative, existence d’un élément neutre
0 mod n et d’un symétrique pour chaque élément) possède une
structure de groupe appelé le groupe additif Zn (prononcé « Z mo-
dulo n »).

On peut aussi faire des multiplications :

4× 7 (mod 3) = (4× 7) mod 3

= 28 mod 3

= 1 mod 3

Nous pouvons montrer là aussi que la multiplication modulo 3
possède toutes les bonnes propriétés qui font de notre ensemble de
classes d’équivalence un groupe pour la multiplication, mais cela
n’est vrai que parce que 3 est premier. En effet si nous essayons
avec les classes d’équivalence modulo 12, nous aurons des diviseurs
de zéro, ce qui détruit la structure de groupe :
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4× 7 (mod 12) = (4× 7) mod 12

= 28 mod 12

= 4 mod 12

4× 6 (mod 12) = (4× 6) mod 12

= 24 mod 12

= 0 mod 12

Dans la seconde expression, le produit de 4 et 6 est nul, ce
qui est très regrettable. Aussi pourrons-nous bien définir un groupe
multiplicatif Z∗

n, qui si n est premier aura les mêmes éléments que
le groupe additif Zn à l’exclusion de 0, mais si n n’est pas premier
il faudra en retrancher les classes correspondant aux diviseurs de n
et à leurs multiples :

Z∗
3 = {1, 2}

Z∗
12 = {1, 5, 7, 11}

Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}

Dans ce groupe multiplicatif chaque élément a un inverse (sinon
ce ne serait pas un groupe) :

5× 5 mod 12 = 25 mod 12

= 1 mod 12

7× 7 mod 12 = 49 mod 12

= 1 mod 12

11× 11 mod 12 = 121 mod 12

= 1 mod 12

7× 13 mod 15 = 91 mod 15

= 1 mod 15

On note que les calculs sont faciles mais les résultats un peu im-
prévisibles : justement, c’est le but que poursuivent nos deux cryp-
tographes. La fonction y = ax n’est pas monotone. L’exponentielle
est définie :
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53 mod 11 = 125 mod 11

= 4

et si n est premier elle a les mêmes propriétés que dans Z :

(ax)y = (ay)x = ax.y

Mise en œuvre de l’algorithme Diffie-Hellman

Voici maintenant le protocole d’échange de clés de Diffie-
Hellman, illustré par un exemple avec de petits nombres pour pou-
voir faire les calculs à la main. Martin Hellman en a eu l’inspira-
tion une nuit, mais il est le résultat de leur travail commun, auquel
d’ailleurs il faut adjoindre Ralph Merkle 1. Le protocole repose sur
une fonction de la forme K = WX mod P, avec P premier et W < P.
Une telle fonction est très facile à calculer, mais la connaissance de
K ne permet pas d’en déduire facilement X. Cette fonction est pu-
blique, ainsi que les valeurs de W et P. Prenons W = 7 et P = 11 2.

1. Anne choisit un nombre qui restera son secret, disons A = 3.
2. Bernard choisit un nombre qui restera son secret, disons B =

6.
3. Anne et Bernard veulent échanger la clé secrète, qui est en

fait S = WB.A mod P, mais ils ne la connaissent pas encore,
puisque chacun ne connaît que A ou que B, mais pas les deux.

4. Anne applique àA la fonction à sens unique, soit α le résultat :

α = WA mod P

= 73 mod 11

= 343 mod 11

= 2

1 Martin Hellman et Whitfield Diffie ont reçu le Prix Turing 2015 pour cette
invention. Lors de leurs discours de réception ils ont abondamment rendu
hommage à Ralph Merkle, oublié par le jury, mais c’était trop tard.

2 Le lecteur attentif remarquera que beaucoup d’auteurs utilisent cet exemple
numérique. S’il se donne la peine de quelques essais personnels il constatera
qu’il y a une bonne raison à cela : les autres valeurs numériques suffisam-
ment petites donnent des résultats corrects mais peu pédagogiques du fait
de coïncidences fâcheuses.
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5. Bernard applique à B la fonction à sens unique, soit β le
résultat :

β = WB mod P

= 76 mod 11

= 117 649 mod 11

= 4

6. Anne envoie α à Bernard, et Bernard lui envoie β, comme re-
présenté par la figure 7.2. α et β ne sont pas la clé, ils peuvent
être connus de la terre entière sans que le secret d’Anne et de
Bernard soit divulgué.

Anne Bernard

Ève

observation

α

β

Figure 7.2 – Échange de clés selon Diffie et Hellman

7. Anne a reçu β et calcule βA mod P (qui est, soit dit en pas-
sant, (WB)A mod P, soit 7B.A mod 11, mais elle ne connaît pas
B) :

βA mod P = 43 mod 11

= 64 mod 11

= 9

8. Bernard a reçu α et calcule αB mod P (qui est, soit dit en
passant, (WA)B mod P, soit 7A.B mod 11, mais il ne connaît
pas A) :

αB mod P = 26 mod 11

= 64 mod 11

= 9

Anne et Bernard obtiennent à la fin de leurs calculs respectifs
le même nombre 9 qui n’a jamais été exposé à la vue des indis-
crets : c’est la clé S ! N’est-ce pas miraculeux ? Ils ont juste échangé
l’information nécessaire pour calculer la clé, sans divulguer celle-ci.
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Supposons qu’Ève veuille épier les conversations d’Anne avec
Bernard : elle pourra intercepter l’échange des messages non chiffrés
α et β, à partir desquels elle veut calculer S = αB mod P. Elle ignore
S et B. L’équation à résoudre pour calculer B consiste à calculer la
fonction réciproque de la fonction à sens unique :

WB = β mod P

Si nous étions dans le monde des nombres réels la solution serait
triviale :

B =
logβ
logW

Mais dans le monde des classes d’équivalence modulo n ce pro-
blème dit du logarithme discret n’a pas de solution simple. C’est un
sujet de recherche. Le « front » est aujourd’hui à des valeurs de P

qui sont des nombres de 450 chiffres binaires. L’algorithme est sûr
si P a 512 chiffres binaires.

L’algorithme de Diffie-Hellman est sans doute une découverte
majeure, totalement contraire à l’intuition. Il procure à deux ac-
teurs d’un cryptosystème le moyen d’échanger une clé sans la faire
circuler sur le réseau. Mais il restait à faire une découverte encore
plus stupéfiante, inspirée d’ailleurs par celle que nous venons de
décrire : un cryptosystème fondé sur des clés publiées dans des an-
nuaires publics !

7.3.5 Le chiffrement asymétrique à clé publique
La méthode de Diffie et Hellman permet l’échange de clés, mais

elle impose une concertation préalable entre les acteurs. Parfois ce
n’est pas pratique : si Anne veut envoyer à Bernard un courrier
électronique chiffré pendant qu’il est en vacances, elle sera obligée
d’attendre son retour pour établir la clé avec lui.

Whitfield Diffie avait eu une autre idée, pour laquelle il n’avait
pas trouvé de solution mathématique appropriée : un système où
l’on utiliserait une clé pour chiffrer et une autre pour déchiffrer.
Ainsi, Bernard proposerait à Anne une clé de chiffrement, avec la-
quelle elle coderait le message, et Bernard le décoderait avec une
clé différente, la clé de déchiffrement. La clé de chiffrement ne per-
met que de chiffrer, même Anne serait incapable de déchiffrer son
propre message avec cette clé, seul Bernard le peut avec sa clé de
déchiffrement. Comme la clé de chiffrement ne fonctionne que dans
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un sens, elle permet de créer des secrets mais pas d’en dévoiler,
et elle peut donc être publique, inscrite dans un annuaire ou sur
un site Web. Quiconque veut envoyer un message chiffré à Bernard
peut la prendre et l’utiliser.

Il faut juste pouvoir être sûr que personne ne pourra calculer la
clé de déchiffrement à partir de la clé de chiffrement. Et là il faut
une intuition mathématique décisive.

Si l’idée du chiffrement asymétrique à clés publiques revient à
Diffie et Hellman (sans oublier les précurseurs britanniques tenus
au secret), la réalisation de cette idée revient à Rivest, Shamir et
Adleman, qui ont trouvé une solution mathématique permettant
la mise en œuvre de l’idée et donné son nom à cette solution : RSA,
leurs initiales.

Une personne désireuse de communiquer selon cette méthode
doit procéder ainsi :

1. Prendre deux nombres premiers p et q. En cryptographie
réelle on choisira de très grands nombres, de 150 chiffres dé-
cimaux chacun. Nous allons donner un exemple avec p = 3 et
q = 11.

2. Calculer n = pq, soit dans notre exemple n = 33.
3. Calculer z = (p − 1)(q − 1). (Ce nombre est la valeur de la

fonction ϕ(n), dite fonction phi d’Euler, et incidemment elle
donne la taille du groupe multiplicatif modulo n, Z∗

n). Dans
notre exemple z = 20.

4. Prendre un petit entier e, impair et premier avec z, soit e = 7.
Dans la pratique e sera toujours petit devant n.

5. Calculer l’inverse de e (mod z), c’est-à-dire d tel que e.d =
1 mod z. Les théorèmes de l’arithmétique modulaire nous as-
surent que dans notre cas d existe et est unique. Dans notre
exemple d = 3.

6. La paire P = (e, n) est la clé publique.
7. La paire S = (d, n) est la clé privée.
Voyons ce que donne notre exemple. La clé publique de Ber-

nard est donc (7, 33). Anne veut lui envoyer un message M, disons
le nombre 19. Elle se procure la clé publique de Bernard sur son
site WWW et elle procède au chiffrement de son message M pour
obtenir le chiffré C comme ceci :
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C = P(M) = Me mod n

C = P(19) = 197 mod 33 = 13

Pour obtenir le texte clair T Bernard décode avec sa clé secrète
ainsi :

T = S(C) = Cd mod n

T = S(13) = 133 mod 33 = 19

Miraculeux, non ? En fait c’est très logique :

S(C) = Cd mod n

= (Me)d mod n

= Me.d mod n

= M mod n

Le dernier résultat, Me.d = M (mod n) découle du fait que e et
d sont inverses modulo n, il se démontre grâce au petit théorème
de Fermat.

Le petit théorème de Fermat
Si p est un nombre premier, pour tout entier a non divisible par p on

a : ap−1 − 1 ≡ 0(modp)
Démonstration :

Considérons les p − 1 premiers multiples de a, a, 2a, ..., (p − 1) × a.
Par exemple, pour p = 23 et a = 5, nous aurons la liste L :

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110

Calculons les restes de la division de ces nombres par p = 23 :
(define (reste-23 n) (remainder n 23))

(map reste-23 L)
(5 10 15 20 2 7 12 17 22 4 9 14 19 1 6 11 16 21 3 8 13 18)

La liste de ces restes est, dans le désordre, celle des valeurs 1, 2, 3, ...p−1.
En effet aucun de ces restes ne peut être nul, parce ni a ni aucun de ses
multiples de rang inférieur à p n’est divisible par p (il faudrait pour cela que
soit a, soit un entier inférieur à p soit divisible par p, ce qui est impossible
par hypothèse pour a et évidemment pour un entier inférieur à p).



Chiffrement 255

Montrons en outre que ces restes sont tous différents. Soient n et m,
différents (n > m) et inférieurs à p, supposons que :

(n× a)÷ p → (n× a) = q1 × p + r1

(m× a)÷ p → (m× a) = q2 × p + r2

Si maintenant nous supposons les restes égaux : r1 = r2 = r, nous
pouvons écrire :

(n× a) = q1 × p + r

(m× a) = q2 × p + r

La soustraction membre à membre de ces égalités nous donne :

(n −m)× a = (q1 − q2)× p

soit un multiple de a par un nombre inférieur à p divisible par p, ce qui
est contraire à l’hypothèse. Donc n = m. Ne pouvant être nuls, et étant
forcément différents les uns des autres, les restes de la liste L sont donc
bien toujours les valeurs 1, 2, 3, ...p − 1.

Si maintenant on fait le produit de ces multiples a, 2a, 3a, ...(p−1)×a,
le résultat est (p − 1)!× ap−1

Le reste modulo p de ce produit, compte tenu du résultat précédent
sur les restes modulo p des multiples, est donc :

a× 2a× ...× (p − 1)a ≡ 1× 2× ...× (p − 1)(modp)

soit
a
p−1 × (p − 1)! ≡ (p − 1)!(modp)

ce que l’on peut réécrire sous la forme :

a
p−1 × (p − 1)! − (p − 1)! ≡ 0(modp)

(ap−1 − 1)× (p − 1)! ≡ 0(modp)

ce qui signifie que l’expression à gauche du symbole d’équivalence est di-
visible par p. D’après le lemme de Gauss (si un nombre entier a divise le
produit de deux autres nombres entiers b et c, et si a est premier avec
b, alors a divise c), c’est soit l’un soit l’autre des deux facteurs de cette
expression qui est divisible par p. Comme (p − 1)! n’est pas divisible par
p, c’est ap−1 − 1, donc :

a
p−1 − 1 ≡ 0(modp)

Cette démonstration est inspirée de celle donnée par Guillaume Saupin
dans le numéro 214 (avril 2018) de GNU/Linux Magazine [116].
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À quel type d’attaque est exposé RSA? Un espion (Ève par
exemple) pourra obtenir la clé publique de Bernard P = (e, n), qui
a servi à chiffrer M, ainsi que le message chiffré, C. Pour trouver
M l’équation à résoudre est :

C = Me mod n

n, C et e étant connus. Encore une fois dans le monde des réels la
solution est triviale : M = e

√
C. Mais dans le monde modulaire la

solution est M = e
√
C mod n, et il n’y a pas de méthode connue

pour la calculer, même pour de petites valeurs de e. Ainsi, trouver
la racine cubique modulo n d’un nombre y n’est pas un problème
résolu aujourd’hui, et d’ailleurs beaucoup de cryptosystèmes indus-
triels utilisent effectivement e = 3.

En fait la seule attaque possible (outre la recherche de failles de
réalisation du logiciel) consisterait à trouver p et q par recherche
des facteurs de n, ce que l’on appelle la factorisation du nombre n.
La factorisation permettrait de calculer z = ϕ(n) = (p− 1)(q− 1).
Le nombre secret d est tel que e.d ≡ 1 mod z. d est un nombre
du même ordre de grandeur que z, soit un nombre de mille chiffres
binaires. Ce calcul serait réalisable, mais le problème est que la fac-
torisation n’est pas un problème résolu, et qu’il est donc impossible
en général de calculer p, q et z.

Les réalisations industrielles ont longtemps utilisé, et utilisent
parfois encore e = 3. De nos jours e = 216+1 = 65 537 est populaire.
Avec un tel choix d est du même ordre de grandeur que n, soit
d ≈ 21024. L’élévation à une puissance de cet ordre peut être réalisée
efficacement par des algorithmes de type « élévation au carré et
multiplication » (square and multiply), qui prennent moins d’une
seconde dans une carte à puce 3.

Le lecteur trouvera des explications mathématiques supplémen-
taires dans l’ouvrage de Cormen, Leiserson et Rivest (le R de RSA)
[34] ou dans celui de Menezes, van Oorschot et Vanstone [86], ou
encore, de façon plus abordable, dans ceux de Gilles Dubertret[47]
d’Albert Ducrocq et André Warusfel [48]. Au demeurant, il est stu-
péfiant de constater que les découvertes prodigieuses de Diffie, Hell-
man, Merkle, Rivest, Shamir et Adleman reposent sur des bases ma-

3 Je remercie le regretté François Bayen pour ses suggestions qui ont notable-
ment amélioré les exposés cryptographiques de ce chapitre.
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thématiques déjà entièrement établies par Leonhard Euler (1707–
1783), sinon par Pierre de Fermat (1601–1665), et que personne n’y
avait pensé avant.

7.3.6 Pretty Good Privacy (PGP) et signature
Le système PGP défraya la chronique judiciaire en 1993 lorsque

son auteur Philip Zimmerman fut soumis à une enquête sévère du
FBI pour le motif d’avoir exporté illégalement des armes de guerre,
en l’occurrence pour avoir placé son logiciel en accès libre sur l’In-
ternet. Les autorités policières américaines (et françaises) ont ten-
dance à penser que le chiffrement robuste est un obstacle à leurs
investigations parce qu’il leur interdirait de déchiffrer les messages
échangés par des criminels ou des ennemis. Aujourd’hui tous les
dispositifs cryptographiques les plus puissants sont accessibles fa-
cilement par l’Internet et ainsi disponibles pour lesdits criminels,
espions, etc. Une législation restrictive ne s’appliquerait par défi-
nition qu’aux honnêtes citoyens soucieux de respecter la loi parce
que c’est la loi, pas parce que c’est difficile de faire autrement. Une
telle législation n’aurait donc pour effet que de mettre les honnêtes
gens à la merci des criminels, ce qui ne semble pas l’effet recherché,
en principe du moins.

Sachant que de telles législations sont en déclin, même en
France, pays qui a fermement tenu l’arrière-garde jusqu’en 1998,
voyons le contenu de PGP. En fait, PGP n’apporte aucune révo-
lution, il est plutôt un assemblage ingénieux et pratique des tech-
niques évoquées ci-dessus.

L’idée du chiffrement asymétrique avec un couple clé publique–
clé privée semble tellement puissante qu’on ne voit pas de raison
pour qu’elle ne supplante pas toutes les autres techniques. En fait
un algorithme aussi puissant soit-il ne résout pas tous les problèmes.
D’abord les algorithmes de chiffrement asymétriques tel RSA sont
très lourds en temps de calcul, et échanger de nombreux messages
chiffrés ainsi devient vite un fardeau.

L’attaque par le milieu (Man in the middle)

Ensuite, le meilleur chiffrement du monde ne peut pas empêcher
qu’un agent malintentionné, disons Charles, se soit fait passer pour
Bernard, ait intercepté les communications d’Anne, et lui ait pré-
senté sa clé publique comme étant celle de Bernard : ainsi Charles
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pourra facilement déchiffrer les messages d’Anne avec sa propre clé
privée, les lire, puis les re-chiffrer avec la vraie clé publique de Ber-
nard et les faire parvenir à ce dernier. Ce type d’attaque, appelé
Man in the middle (par le milieu), est difficile à déjouer une fois que
Charles a réussi à s’introduire dans le circuit de communication ;
elle peut être tentée contre RSA et aussi contre Diffie-Hellman.

En fait nous sommes ramenés au sempiternel problème dont
nous nous croyions débarrassés : comment établir une relation de
confiance entre Anne et Bernard, comment échanger des clés dignes
de foi. Mais nous avons quand même accompli un progrès : cet
échange de clés doit être certifié, mais il peut se faire au grand
jour puisque les clés sont désormais publiques. Les clés publiques
doivent être signées par une autorité supérieure, ce qui donne nais-
sance à le notion d’infrastructure de gestion de clés, ou IGC (PKI
en anglais), voir plus loin section 7.4.

Pour pallier la lenteur des calculs d’algorithmes à la RSA, Zim-
merman eut l’idée de recourir au bon vieux chiffrement à clé par-
tagée ; comme le point faible de ce dernier est l’envoi de la clé, on
utilisera RSA pour communiquer une clé de session pour un al-
gorithme à clés symétriques, clé qui servira à chiffrer la suite des
communications avec cet algorithme classique. En l’occurrence Zim-
merman choisira IDEA, un cousin de DES à clés de 128 bits, créé à
Zurich par James L. Massey et Xuejia Lai, et réputé très robuste.
Incidemment les systèmes de communication chiffrés tels que SSL
(Secure Socket Layer) utilisés pour les transactions par le WWW,
la relève de courrier électronique et la connexion conversationnelle
à distance par SSH (Secure Shell) fonctionnent de cette façon.

Cette utilisation combinée des méthodes de chiffrement symé-
trique (DES en l’occurrence) et asymétrique sera la vraie révolution
pratique, qui suscitera la colère de la NSA et de ses homologues dans
d’autres pays dont la France. Avant que cette possibilité existe, les
utilisateurs de cryptosystèmes se mettaient laborieusement d’ac-
cord sur une clé, puis ils l’utilisaient pendant longtemps. La NSA
disposait sans doute des moyens de casser le chiffrement DES, ce
qui lui ouvrait des mois de lecture paisible de messages réputés se-
crets. Avec la combinaison de DES et RSA, les utilisateurs changent
de clé à chaque échange de messages, ce qui complique beaucoup la
tâche des « services ».

PGP sera la cible principale de l’ire des services gouvernemen-
taux, non parce qu’il serait un cryptosystème révolutionnaire, mais
parce qu’il constitue une trousse à outils facile d’emploi pour l’usage
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quotidien, avec les outils de chiffrement symétrique et asymétrique,
la gestion de « trousseaux de clés » publiques et privées, l’incorpora-
tion automatique de ces outils au logiciel de courrier électronique de
l’utilisateur, sans oublier les accessoires de signature électronique.
Bref, on installe PGP (ou maintenant sa version libre GnuPG) sur
son ordinateur personnel et ensuite tous les messages sont chiffrés
et déchiffrés sans que l’on ait à s’en préoccuper. Les services sem-
blaient mal supporter cette situation.

Signature

Outre sa fonction de chiffrement, RSA est aussi utilisable de
façon très simple pour signer de façon sûre et non répudiable un
document : il suffit que l’émetteur (le signataire en l’occurrence)
chiffre le document à authentifier avec sa clé privée : le destinataire
déchiffrera avec la clé publique de l’émetteur, et si le déchiffrement
réussit ce sera une authentification sûre.

En fait, plutôt que de signer en chiffrant de cette façon l’en-
semble du message, on en extrait un résumé numérique par un
algorithme de condensation, tel MD5 créé par Ron Rivest, ou SHA
(Secure Hash Standard FIPS 180-1), que l’on chiffre. Outre une
signature non répudiable, ce procédé garantit en pratique l’inté-
grité du message. Le principe d’une fonction de condensation (ou
de hachage) est le suivant : soient M et M ′ deux messages, et H la
fonction :

1. si M ̸= M ′, la probabilité que H(M) = H(M ′) est très voisine
de 0 ;

2. quel que soit M, il est difficile de trouver un M ′ ̸= M tel que
H(M ′) = H(M).

7.3.7 Usages du chiffrement : VPN
À la section 7.3 p. 243, nous avons décrit l’usage de techniques

cryptographiques pour le chiffrement de messages individuels, mais
ce n’est en aucun cas le seul usage de cette technique. On peut
imaginer, et c’est de plus en plus ce qui sera réalisé, le chiffrement
systématique de toutes les communications en réseau.

Si l’on procède ainsi, chiffrer message par message serait très
inefficace : on choisira plutôt de chiffrer le flux de l’ensemble du
trafic sur un ou plusieurs itinéraires donnés, cela constituera un ré-
seau privé virtuel, (VPN, Virtual Private Network). Il s’agira par
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exemple d’établir un canal chiffré entre deux nœuds quelconques de
l’Internet, ces nœuds pouvant eux-mêmes être des routeurs d’entrée
de réseaux. On aura ainsi établi une sorte de tunnel qui, à travers
l’Internet, reliera deux parties éloignées l’une de l’autre du réseau
d’une même entreprise pour donner l’illusion de leur contiguïté.
Mais le chiffrement permet aussi d’établir un VPN personnel pour
un utilisateur, par exemple entre son ordinateur portable et le ré-
seau local de l’entreprise.

Encapsulation, tunnel, inspection en profondeur
Les premières pages de ce chapitre nous ont familiarisés avec les no-

tions de protocole, de paquet, de segment et d’en-tête. Munis de ce savoir,
posons-nous le problème suivant : il faut acheminer les échanges relatifs à
un protocole A au travers d’un réseau R qui n’autorise pas ce protocole.
C’est possible en utilisant un protocole autorisé, appelons-le B ; à l’entrée
du réseau R qui refuse le protocole A, je place les paquets complets de
A, munis de leurs en-têtes, comme des données de paquets B, munis des
en-têtes B ; à la sortie de ce réseau j’extraierai les paquets A, qui pourront
continuer leur chemin. Pour que cela marche, il aura bien sûr fallu que je
mette en place quelques conventions qui me permettent de retrouver mes
paquets A à la sortie. Cette opération s’appelle encapsulation de A dans
B. En encapsulant le protocole A dans le protocole B, nous avons réalisé
un tunnel pour le protocole A au travers du réseau R inhospitalier.

Maintenant le travail des ingénieurs de sécurité du réseau R, dont la
mission est d’empêcher le transit du protocole A à travers R, est plus
difficile. Avant le tunnel, il leur suffisait de bloquer le numéro de port
caractéristique du protocole A. Désormais, il leur faut configurer un logiciel
de détection d’intrusion qui va examiner le contenu de tous les paquets, y
compris ceux de protocoles autorisés comme B, pour voir si les données
ne sont pas des paquets A encapsulés. Ce travail d’examen des données
contenues dans les paquets se nomme inspection en profondeur.

L’encapsulation de protocole utilise fréquemment des protocoles uni-
versellement autorisés, comme Http (Web, port 80) ou le DNS (port 53).

On remarquera que le fonctionnement normal du réseau comporte déjà
l’encapsulation de chaque protocole en partant du haut de la pile dans le
protocole de la couche immédiatement inférieure, par exemple de TCP dans
IP. Mais rien n’empêche d’encapsuler un flux IP dans TCP. Naguère, du
temps du réseau Transpac, on encapsulait IP dans X25, protocole étranger
à l’Internet.

Principes du réseau privé virtuel

Le chiffrement est généralement utilisé pour les VPN de la façon
suivante : l’algorithme de Diffie-Helmann est utilisé pour procéder
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au choix d’un secret partagé, qui constituera une clé de session pour
chiffrer le trafic, et qui sera renouvelé à intervalles réguliers.

Il y a en revanche une assez grande variété de solutions pour
introduire le VPN dans l’architecture du réseau :

— Couche 3 : introduire le VPN au niveau de la couche réseau
(no 3 du modèle ISO) semble la solution la plus logique : il
s’agit bien de créer un réseau virtuel, après tout. C’est la
solution retenue par la pile de protocoles désignés collective-
ment par l’acronyme IPsec, que nous décrirons à la section
suivante. Les protocoles IPsec sont implantés dans le noyau
du système d’exploitation, ce qui assure une plus grande sû-
reté de fonctionnement (face aux attaques notamment) et
de meilleures performances (un protocole implanté en es-
pace utilisateur passe son temps à recopier des tampons de
mémoire entre l’espace noyau et l’espace utilisateur).

— Couche 4 : La disponibilité de bibliothèques SSL/TLS
(pour Secure Socket Layer/Transport Layer Security) à la
mise en œuvre facile a encouragé le développement de VPN
de couche 4 (transport), comme OpenVPN ou les tunnels
SSL 4. OpenVPN, par exemple, établit un tunnel entre deux
stations, et par ce tunnel de transport il établit un lien ré-
seau, chaque extrémité recevant une adresse IP.

— Couche 7 : Le logiciel SSH (Secure Shell), qui comme son
nom l’indique est un client de connexion à distance chiffrée,
donc de couche 7, permet de créer un tunnel réseau.

— Couche 2 : Mentionnons ici, pour mémoire, les réseaux lo-
caux virtuels (VLAN) ; il ne s’agit pas à proprement parler
de VPN, mais ils ont souvent un même usage : regrouper
les stations d’un groupe de personnes qui travaillent dans la
même équipe sur un réseau qui leur soit réservé, séparé des
réseaux des autres équipes. Et on peut même encapsuler un
VLAN (couche 2) dans des paquets UDP de couche 4, c’est
le protocole Virtual Extensible LAN 5 (VXLAN), indispen-
sable avec l’informatique en nuage 6.

4 http://openvpn.net/
5 Cf. http://vincent.bernat.im/fr/blog/2012-multicast-vxlan.html
6 En effet la possibilité, offerte par l’informatique en nuage (cloud compu-

ting), que la machine virtuelle chargée d’effectuer votre travail se déplace
subitement à l’autre bout de la planète crée un dilemme : soit elle se déplace
dans la couche 3, et elle change alors de réseau, donc d’adresse IP, et si elle

http://openvpn.net/
http://vincent.bernat.im/fr/blog/2012-multicast-vxlan.html
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L2TP (Layer Two Tunneling Protocol), comme son nom l’in-
dique, encapsule une liaison de couche 2 (liaison de données)
sur un lien réseau (couche 3).

IPsec

IPsec désigne un ensemble de RFC destinées à incorporer les
techniques de chiffrement (et d’autres, relatives aussi à la sécurité)
au protocole IP lui-même, plutôt que d’avoir recours à des solutions
externes. IPv6 a été conçu pour pouvoir comporter d’emblée toutes
les spécifications IPsec, qui sont aussi disponibles pour IPv4.

IPsec comporte essentiellement deux protocoles :
— le protocole AH (Authentication Header) assure l’authenti-

cité et l’intégrité des données acheminées ; c’est un protocole
réseau, de couche 3 donc, que l’on peut voir comme une op-
tion d’IP ;

— le protocole de transport ESP (couche 4) (Encapsulating Se-
curity Payload) assure la confidentialité et l’intégrité des
données, leur authenticité étant assurée de façon optionnelle.

Avec l’un ou l’autre de ces protocoles, IPsec peut fonctionner
en mode transport ou en mode tunnel :

— en mode tunnel chaque paquet IP est encapsulé dans un
paquet IPsec lui-même précédé d’un nouvel en-tête IP ;

— en mode transport un en-tête IPsec est intercalé entre l’en-
tête IP d’origine et les données du paquet IP.

La figure 7.3 illustre ces différentes possibilités.
Les protocoles AH et ESP sont complétés par le protocole

d’échange de clés IKE (Internet Key Exchange), défini dans la RFC
2409, et par le protocole de gestion de clés ISAKMP (Internet Se-
curity Association and Key Management Protocol), défini dans la
RFC 2408. Selon certains experts du réseau, ISAKMP serait un
protocole irrémédiablement mal conçu.

ISAKMP est censé faciliter un grand déploiement mais n’est pas
nécessaire à IPsec.

abrite votre serveur web vous perdez vos visiteurs, ou alors elle se déplace
dans la couche 2, mais cela impose une infrastructure de niveau 2 transcon-
tinentale, ce qui est impraticable à cause de la taille excessive de la table
d’adresses MAC (de couche 2) et des problèmes de sécurité entraînés par
la non-segmentation d’un réseau tellement vaste. VXLAN est une des solu-
tions possibles du dilemme. NVGRE (Network Virtualization using Generic
Routing Encapsulation) est une proposition alternative.
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Figure 7.3 – Protocoles et modes IPsec

Autres réseaux privés virtuels

À côté d’IPsec, il existe d’autres procédés pour créer des ré-
seaux privés virtuels, intégrés à TCP/IP de façon peut-être moins
satisfaisante, mais plus pratique.

1. L2TP (Layer Two Tunneling Protocol, RFC 2661), comme
son nom l’indique, encapsule une liaison de couche 2 (liaison
de données) sur un lien réseau (couche 3), ce qui permet à un
PC distant d’avoir accès au réseau de son entreprise comme
s’il était connecté au réseau local, et ainsi d’avoir accès aux
serveurs de fichiers, aux imprimantes, etc.

2. MPLS (Multi-Protocol Label Switching, RFC 2547) est un pro-
tocole de niveau 3 (réseau) qui permet d’établir un tunnel
privé au sein d’un réseau public ; il est surtout utilisé par les
fournisseurs d’accès à l’Internet pour proposer à leurs clients
un moyen de créer un réseau privé entre plusieurs sites d’une
même entreprise.

3. Mentionnons également des procédés pour créer des tunnels
dits « IP dans IP » (couche 3, réseau) par divers procédés,
ou encore les réseaux virtuels créés au moyen de TLS (Trans-
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port Layer Security), qui, comme son nom l’indique, est une
version de la couche 4 renforcée du point de vue de la sécurité.

Aujourd’hui, la plupart des VPN effectivement en fonction ap-
partiennent à la dernière catégorie de la liste ci-dessus. Il existe des
boîtiers qui contiennent des systèmes tout configurés, qu’il suffit de
placer derrière les routeurs d’entrée de réseau pour disposer d’un
VPN entre deux sites.

Il convient, avant de clore cette section, de signaler que si la
technique des réseaux locaux virtuels (Virtual Local Area Network,
VLAN) vise un objectif en principe assez différent de celui des VPN,
elle peut dans certains cas être envisagée comme une solution de
substitution.

7.4 Annuaire électronique et gestion de clés
À ce stade de l’exposé, nous disposons de deux types de cryp-

tosystèmes, l’un symétrique à secret partagé, l’autre asymétrique
avec clés publiques et clés privées, le second permettant l’échange
du secret partagé nécessaire au premier. Nous avons aussi, sans coût
supplémentaire, un système de signature sûre et non répudiable qui
garantit en outre l’intégrité des messages reçus. Ce qu’un système
technique ne peut fournir à lui seul, c’est l’établissement du circuit
de la confiance : comment être sûr que telle clé publique ne m’a
pas été fournie par un usurpateur ? PGP fournit à ce problème une
solution à l’échelle d’une personne et de son cercle de relations :
trousseau de clés publiques et privées conservé sur le disque dur
d’un ordinateur personnel. Mais il est patent que PGP ne répond
pas, du moins à lui tout seul, à ce problème à l’échelle d’une entre-
prise, ni a fortiori à celle de l’Internet. Pour ce faire il faut recourir
à un système d’annuaire électronique complété par une infrastruc-
ture de gestion de clés (IGC, en anglais Public Key Infrastructure,
PKI).

L’annuaire électronique est une base de données au format un
peu particulier qui rend les services habituels d’un annuaire : réper-
torier des personnes ou des serveurs selon un schéma hiérarchique,
de l’entité la plus englobante (pays) à la plus petite (personne) en
passant par plusieurs niveaux (entreprise, département, service...).
L’annuaire électronique contient aussi, idéalement, des certificats,
qui comprennent notamment les clés publiques des entités enregis-
trées. Pour attester la véracité de ces certificats, ils sont, toujours
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idéalement, signés par une ou plusieurs autorités de certification,
et éventuellement par le détenteur de la clé lui-même.

Il existe une norme assez généralement acceptée pour la struc-
ture hiérarchique de désignation des objets de l’annuaire, héritée de
la norme d’annuaire X500 de l’ISO et adaptée de façon simplifiée
par l’IETF pour les protocoles de l’Internet, sous le nom LDAP
(Lightweight Directory Access Protocol). La syntaxe ne fera peut-
être pas l’unanimité, mais elle permet de traiter à peu près tous les
cas possibles. Voici le DN (Distinguished Name) de l’objet « Jacques
Martin », c’est-à-dire son nom absolu, constitué de RDNs (Relative
Distinguished Names) successifs, un peu comme les noms relatifs
dans une arborescence de fichiers Unix constituent le chemin ab-
solu d’un fichier ; CN signifie Common Name, OU Organizational
Unit, O Organization :

cn=Jacques Martin, ou=Groupe Système,
ou=Division Informatique, o= Compagnie Dupont

La forme des certificats découle également de la normeX500, et
elle obéit à la norme X509.

Qui certifie la signature des autorités de certification ? En bref,
qui me garantit que le contenu de l’annuaire n’est pas un artefact
créé par un escroc ? La procédure de création de l’IGC et d’enre-
gistrement des entités comportera nécessairement une intervention
humaine qui à chaque étape constate l’identité de la personne (phy-
sique, morale ou technique) à laquelle est délivré le certificat. Un
certificat émis par l’IGC décrit une entité et contient sa clé pu-
blique, ainsi que les signatures des autorités qui garantissent le
certificat.

Dans un monde idéal (idéal du point de vue de la sécurité in-
formatique, qui n’est certes pas le seul possible), une hiérarchie
d’IGC propage une certaine confiance. Chaque personne qui accède
à un système d’information est identifiée par l’annuaire et authen-
tifiée par son certificat et sa clé publique, dont le pendant est la clé
privée. Chaque serveur est également identifié et authentifié. Les
communications entre les deux peuvent être chiffrées. Ceci aurait
pour avantage, outre de faire obstacle plus efficacement à la fraude
informatique, de permettre aux personnes de posséder un système
d’identification électronique unique (single sign on) au lieu d’avoir
à connaître des dizaines de mots de passe et autres codes secrets
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pour leur carte bancaire, leur téléphone mobile, leurs courriers élec-
tronique privé et professionnel, la consultation en ligne de leurs
comptes bancaires, les différents systèmes informatiques auxquels
elles accèdent pour leur vie professionnelle et privée.

7.5 Sécurité d’un site en réseau
7.5.1 Découpage et filtrage

Assurer la sécurité de systèmes informatiques abrités sur un site
connecté à l’Internet et de ce fait accessible du monde entier est
une autre branche de ce domaine dont, en 2018 encore, beaucoup
d’organisations ne semblent pas avoir pris l’exacte mesure.

Comme nous l’avons déjà mentionné, il appartient tout d’abord
aux responsables du site de déterminer le périmètre qu’ils veulent
protéger, ainsi que ce qu’ils veulent permettre et autoriser.

Cet examen aboutit généralement à identifier un certain nombre
de services qui doivent être accessibles de l’extérieur par nature,
comme un serveur WWW, un relais de courrier électronique, un
serveur DNS. Les ordinateurs qui abritent ces services devront être
visibles de l’Internet, c’est-à-dire que le DNS doit publier leurs
adresses.

Les autres ordinateurs, que ce soient des serveurs internes ou
les stations de travail des personnes qui travaillent sur le site, ne
doivent pas être visibles, mais il faut néanmoins qu’ils puissent ac-
céder à l’Internet. En d’autres termes, une session TCP initiée de
l’intérieur du site depuis un de ces ordinateurs est autorisée, mais
une session initiée de l’extérieur vers le même ordinateur est in-
terdite parce que réputée erronée ou hostile (pour un expert en
sécurité informatique les deux termes sont synonymes).

De quels moyens et méthodes disposons-nous en 2018 pour
mettre en œuvre une telle politique de sécurité ? Il nous faut pour
cela nous rappeler le chapitre 6 consacré aux réseaux, et notamment
ce que nous avons dit des informations contenues dans les en-têtes
de datagrammes IP et de segments TCP, ainsi que du routage.

Chaque paquet IP qui se présente à un routeur est doté d’une
fiche signalétique constituée de ses en-têtes. Les informations prin-
cipales par rapport au sujet qui nous occupe sont les adresses IP
d’origine et de destination et le protocole de transport (TCP ou
UDP), figurant dans l’en-tête de datagramme IP, et les numéros de
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ports 7 d’origine et de destination, figurant dans l’en-tête de seg-
ment TCP ou de datagramme UDP. La mention dans l’en-tête IP
du protocole de transport permet de connaître le format de l’en-
tête de transport (TCP ou UDP), et ainsi d’y retouver le numéro
de port. Nous avons vu que l’association d’une adresse et d’un port
constituait une socket (voir section 6.6.1). Une paire de sockets
identifie de façon unique une connexion dans le cas de TCP. Le
routeur maintient une table des connexions TCP établies qui lui
permet de déterminer si ce paquet appartient à une communication
déjà en cours (parce que entre mêmes adresses IP et avec mêmes
numéros de ports, par exemple) ou à une nouvelle communication.

Le routage est un grand instrument de sécurité. Il permet de dé-
couper un grand réseau en autant de sous-réseaux qu’on le souhaite,
et de contrôler le trafic entre ces sous-réseaux. Les sous-réseaux
peuvent d’ailleurs être virtuels, pour s’affranchir des contraintes de
localisation, ce qui sera de plus en plus le cas avec le développement
de l’informatique mobile. Ceci exige des compétences et du travail,
parce que ce que nous avons dit du routage montre que c’est tout
sauf simple. Mais un tel investissement est indispensable à qui veut
disposer d’un réseau sûr.

Forts de cette possibilité, nous pourrons découper le réseau de
notre site en un sous-réseau public, qui abritera les serveurs visibles
de l’extérieur, et un sous-réseau privé, éventuellement divisé lui-
même en sous-réseaux consacrés à tel groupe ou à telle fonction.
Chacun de ces sous-réseaux verra son accès et son trafic régis par
des règles spéciales.

Les règles d’accès et de trafic appliquées aux réseaux consistent
à établir quels sont les type de paquets (en termes de protocole et de
numéro de port, en l’état actuel de la technique) autorisés en entrée
ou en sortie depuis ou vers tel réseau ou telle adresse particulière.
Ainsi un serveur de messagerie pourra recevoir et émettre du trafic
SMTP (port 25) mais n’aura aucune raison de recevoir du trafic
NNTP (Network News Transfer Protocol). Appliquer ce genre de
règles s’appelle du filtrage par port.

Le sous-réseau public (souvent appelé « zone démilitarisée » ou
DMZ) devra faire l’objet de mesures de sécurité particulièrement
strictes, parce que de par sa fonction il sera exposé à toutes les

7 Rappelons qu’un port dans la terminologie TCP/IP est un numéro conven-
tionnel qui, associé à une adresse IP, identifie une extrémité de connexion.
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attaques en provenance de l’Internet. Le principe de base est : tout
ce qui n’est pas autorisé est interdit, c’est-à-dire que tout paquet qui
n’a pas de justification liée aux fonctions du serveur de destination
doit être rejeté.

filtrage
routeur avec

vers
l’Internet

réseau public (DMZ)

réseau privécoupe−feu

serveur serveur de station de station de

relais de
messagerie

proxy
WWW

travail travailmessageriede données

Figure 7.4 – Réseau avec DMZ et coupe-feu

Il est prudent que les serveurs en zone publique contiennent
aussi peu de données que possible, et même idéalement pas du
tout, pour éviter qu’elles soient la cible d’attaques. Ceci semble
contradictoire avec le rôle même d’un accès à l’Internet, mais cette
contradiction peut être résolue en divisant les fonctions. Ainsi pour
un serveur de messagerie il est possible d’installer un relais en zone
publique qui effectuera toutes les transactions avec le monde exté-
rieur mais transmettra les messages proprement dit à un serveur
en zone privée, inaccessible de l’extérieur, ce qui évitera que les
messages soient stockés en zone publique en attendant que les des-
tinataires en prennent connaissance. De même un serveur WWW
pourra servir de façade pour un serveur de bases de données en
zone privée. Ces serveurs en zone publique qui ne servent que de
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relais sont souvent nommés serveurs mandataires (proxy servers en
anglais).

La figure 7.4 représente un tel dispositif, avec un routeur d’en-
trée qui donne accès à la DMZ et un coupe-feu (firewall), qui est
en fait un routeur un peu particulier dont nous détaillerons le rôle
ci-dessous, qui donne accès à un réseau privé.

Le relayage entre zone publique et zone privée fonctionne aussi
dans l’autre sens : l’utilisateur en zone privée remet son courrier
électronique au serveur privé, qui l’envoie au relais en zone pu-
blique, qui l’enverra au destinataire. Pour consulter une page sur le
WWW, l’utilisateur s’adresse au serveur relais qui émettra la vraie
requête vers le monde extérieur. Ici le relayage peut procurer un
autre avantage, celui de garder en mémoire cache les pages obte-
nues pendant un certain temps, pour les fournir au même utilisateur
ou à un autre lorsqu’il les redemandera sans avoir à accéder à la
source distante (l’analyse statistique des requêtes révèle que dans
un contexte donné les gens accèdent souvent aux mêmes pages).

Le filtrage par port permettra la communication entre le proxy
et le serveur en zone privée de façon contrôlée. Les routeurs dis-
posent de fonctions de filtrage assez élaborées, permettant de dis-
tinguer quels protocoles et quels numéros de ports sont autorisés
selon l’origine et la destination, et si telle communication a été ini-
tiée depuis un nœud à l’intérieur ou à l’extérieur du réseau.

Une pratique courante consiste à placer à l’entrée du réseau
privé un coupe-feu (firewall). Un coupe-feu est un ordinateur qui
filtre les communications un peu comme un routeur, d’ailleurs il est
possible de configurer un routeur pour lui faire jouer le rôle d’un
coupe-feu simple. Le coupe-feu a généralement des possibilités plus
étendues, notamment en termes de suivi de connexion et d’analyse
des paquets. Plus précisément, un routeur doit décider au coup par
coup du sort de chaque paquet individuel, avec très peu de possibi-
lité d’analyse historique, un coupe-feu peut disposer d’informations
plus complètes, peut garder des datagrammes en file d’attente jus-
qu’à reconstituer une séquence plus longue de la communication
et en faire une analyse plus complète. Bien sûr ceci a un coût en
termes de débit...

Routeur filtrant et coupe-feu, configurés pour repousser cer-
taines attaques en rejetant des paquets appartenant à des
connexions suspectes, produisent des fichiers de comptes rendus
(logs) qui relatent les incidents. Il est bien sûr indispensable, pour
bénéficier de la protection qu’ils sont censés procurer, d’analyser le
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contenu de ces fichiers et de les confronter avec les avis publiés par
les CERT (Computer Emergency Response Teams) (sur les CERT
voir la section suivante 7.6). Ceci suppose des ingénieurs compétents
pour ce faire, ce qu’oublient certaines entreprises qui se croient pro-
tégées en achetant (fort cher) un coupe-feu clés en mains, configuré
avec des filtres pertinents à un instant donné mais périmés quinze
jours plus tard, et qui se retrouvent ainsi dotés d’une magnifique
ligne Maginot 8.

7.6 Les CERT (Computer Emergency Response
Teams)

Organisation des CERT

Les CERT (Computer Emergency Response Teams), comme
leur nom l’indique, centralisent, vérifient et publient les alertes re-
latives à la sécurité des ordinateurs, et notamment les annonces de
vulnérabilités récemment découvertes. Les alertes peuvent émaner
des auteurs du logiciel, ou d’utilisateurs qui ont détecté le problème.
Détecter une vulnérabilité ne veut pas dire qu’elle soit exploitée, ni
même exploitable, mais le risque existe.

Les vulnérabilités publiées par les CERT sont relatives à toutes
sortes de systèmes ; leur publication constitue une incitation forte
pour que les industriels concernés (les producteurs du système ou
du logiciel le plus souvent) les corrigent. Certains tentent aussi de
ralentir le travail des CERT, dont ils aimeraient bien qu’ils ne dé-
voilent pas leurs faiblesses...

Le premier CERT a vu le jour à l’Université Carnegie-Mellon de
Pittsburgh à la fin des années 1980. En 2018 la France dispose de
trois CERT principaux (il y a des CERT privés ou d’intérêt local) :
le CERTA pour les besoins des administrations et services publics,
le CERT Renater s’adresse aux Universités et centres de recherche,
le CERT-IST s’adresse au monde industriel. En fait la coopération
entre les CERT est assez étroite.

La publication des avis des CERT est une contribution majeure
et vitale à la sécurité des systèmes d’information. Simplement le

8 Le lecteur non français peut ignorer le nom de cette ligne de fortifications
infranchissable établie par l’armée française dans les années 1930 pour se
prémunir d’une invasion allemande, et qui n’avait que le défaut de ne pas
être placée à l’endroit où cette invasion s’est produite en 1940.
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volume est tel que leur dépouillement représente un travail consi-
dérable par des personnes compétentes.

Faut-il publier les failles de sécurité ?

Un débat s’est engagé sur le bien fondé de certains avis, et sur
la relation qu’il pourrait y avoir entre le nombre d’avis concernant
un logiciel ou un système donné et sa qualité intrinsèque. Les dé-
tracteurs des logiciels libres ont par exemple mis en exergue le vo-
lume très important d’avis des CERT qui concernaient ceux-ci (par
exemple Linux, le serveur WWW Apache, Sendmail, etc.) pour en
inférer leur fragilité. Leurs défenseurs ont riposté en expliquant que
les avis des CERT concernaient par définition des failles de sécu-
rité découvertes et donc virtuellement corrigées, alors que l’absence
d’avis relatifs à tel système commercial pouvait simplement signifier
que son auteur passait sous silence ses défauts de sécurité en pro-
fitant de son opacité. Or l’expérience prouve que tout dispositif de
sécurité a des failles ; les vrais attaquants ne perdent pas leur temps
à faire de la recherche fondamentale sur la factorisation des grands
nombres entiers, ils essaient de repérer les failles d’implémentation
et ils les exploitent. Face à ce risque la meilleure protection est une
capacité de riposte rapide, qui consiste le plus souvent à commencer
par désactiver le composant pris en défaut en attendant la correc-
tion. La communauté du logiciel libre excelle dans cet exercice, mais
avec les logiciels commerciaux les utilisateurs n’ont souvent aucun
moyen d’agir sauf à attendre le bon vouloir de leur fournisseur. Dans
ce contexte, la publication d’avis des CERT relatifs à des logiciels
commerciaux est très bénéfique parce qu’elle incite les fournisseurs
à corriger plus rapidement un défaut dont la notoriété risque de
nuire à leur réputation. Mais certains fournisseurs cherchent à ob-
tenir le silence des CERT en arguant du fait que leurs avis risquent
de donner aux pirates des indications précieuses... ce qui est fal-
lacieux parce que les sites WWW des pirates sont de toute façon
très bien informés et mis à jour, eux, selon les principes du logi-
ciel libre, ce qui indique où est l’efficacité maximum. L’expérience
tend à prouver qu’une faille de sécurité est d’autant plus vite com-
blée qu’elle est publiée vite et largement. L’accès au code source du
logiciel en défaut est bien sûr un atout supplémentaire.
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8.1 Un échec plein d’avenir
Comme nous l’avons déjà mentionné à la section 3.10.1, Multics

est né en 1964 au MIT (Massachusetts Institute of Technology) dans
le cadre d’un projet de recherche nommé MAC, sous la direction
de Fernando Corbató. La même équipe avait déjà créé le système
CTSS. Multics était destiné aux ordinateurs General Electric de la
famille GE 635, pour lesquels le constructeur fournissait de son côté
un système d’exploitation plus conventionnel. Le projet associait
le MIT, General Electric et les Bell Telephone Laboratories (une
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filiale d’AT&T, American Telegraph and Telephone, qui détenait le
monopole des télécommunications pour les États-Unis).

L’objectif du projet était la réalisation d’un grand système infor-
matique capable de fournir des services interactifs en temps partagé
à un millier d’utilisateurs simultanés. Multics comportait beaucoup
d’innovations de grande portée : le langage de commande pour pi-
loter le fonctionnement de la machine était un langage de program-
mation, le même que celui dont disposait l’utilisateur pour interagir
avec le système, le shell évoqué à la section 3.10.1. Le système d’ex-
ploitation était écrit en langage évolué (en l’occurrence PL/1), voie
ouverte par les systèmes Burroughs écrits en Algol, mais encore
peu fréquentée. Les concepts de mémoire centrale pour les données
volatiles et de fichiers pour les données persistantes étaient fon-
dus en un concept unique de mémoire virtuelle segmentée, certains
segments étant dotés de la qualité de persistance, comme décrit
à la section 5.4. Les segments persistants étaient catalogués dans
des répertoires à l’organisation arborescente tels que ceux décrits
à la section 5.2.1. Moins spectaculaire en apparence mais peut-être
aussi importante était l’existence de toute une collection d’outils
programmables et combinables entre eux destinés à faciliter le tra-
vail d’un type d’utilisateur : le programmeur, et plus spécialement
celui qui écrivait un système d’exploitation.

Malgré ou à cause de toutes ces qualités uniques et promises à
un grand avenir, Multics fut en gros un échec, au moins du point
de vue de sa diffusion. Ses mérites furent reconnus tardivement, et
le plus souvent tacitement, par ceux qui en reprirent les idées à leur
compte.

Cette méconnaissance longue des mérites de Multics a ses rai-
sons : la technologie des ordinateurs disponible à l’époque de sa
diffusion, essentiellement pendant les années 1970, ne permettait
d’implémenter les méthodes et les concepts élaborés de ce système
qu’au prix d’une grande lourdeur. Les ordinateurs exploités sous
Multics étaient gros, chers et lents. L’institut de statistique qui
employait à l’époque l’auteur de ces lignes en avait acquis un, fruit
de la fusion CII-Honeywell-Bull, et ses experts en informatique dé-
mographique avaient essayé d’imaginer les moyens de traiter avec
cet engin les recensements de la population, mais ils avaient fini par
regarder ce drôle de système un peu de l’œil de la poule qui a couvé
un œuf de cane.

Leur perplexité n’avait d’ailleurs d’égale que celle des ingénieurs
commerciaux qui essayaient de vendre la chose, ou celle des ingé-
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nieurs spécialistes de Multics auxquels nous posions des questions
incongrues comme « Pourrions-nous traiter des fichiers sur bande
magnétique en traitement par lots ? », méthode béotienne mais in-
dispensable à l’époque du fait de la faible capacité des disques.

Il résulta de cette expérience peu de résultats nouveaux dans le
travail statistique courant, mais un sursaut intellectuel parmi ceux
des informaticiens qui n’avaient pas définitivement sombré dans la
léthargie coboliste 1 dont on n’émergerait que pour sombrer dans
Windows. Si changer de langage ou de système ne rend pas plus
intelligent, il y a des systèmes et des langages qui incitent à la ré-
flexion, et d’autres moins. Cela dépend pour une grande part du
type d’initiative laissé à l’utilisateur et du niveau d’intelligibilité
que le système exhibe. Il y a des systèmes dont les paramètres de
fonctionnement sont enfouis dans des fichiers binaires inaccessibles
à l’utilisateur, qui n’a qu’un seul choix : cliquer sur des menus en es-
pérant que cela finira par produire un résultat désiré ; c’est le cas de
Windows. Unix au contraire contient tous ses paramètres dans des
fichiers texte lisibles et réunis dans un endroit connu (le répertoire
/etc). La première méthode n’est justifiable que si la réalisation
du système est sans faille, et autorise l’utilisateur à ne jamais se
préoccuper de ces paramètres, ce qu’ont réussi les concepteurs de
MacOS, mais pas ceux de Windows ; elle suppose aussi que lesdits
utilisateurs ne sont que cela, utilisateurs, qu’ils ne nourrissent au-
cun intérêt pour le système et n’envisagent pas une seconde de se
mettre à le modifier, ou du moins à en modifier le comportement
en jouant sur les paramètres.

Multics, sous cet angle comme sous certains autres, était un
précurseur d’Unix, système qui considère ses utilisateurs comme des
personnes intelligentes, mais aussi suffisamment intéressées par le
système lui-même pour lui consacrer un temps non négligeable dont
les employeurs ne comprennent pas toujours la fécondité. C’est ainsi
que des industriels ont inventé pour Unix une interface utilisateur
nommée CDE (Common Desktop Environment) dont le principe
est de plaquer sur le système une sorte de super-Windows dont le
paramétrage, réservé à des administrateurs, est ensuite propagé à
la masse des utilisateurs. Cette vision centralisée et hyper-organisée
aurait sans doute bien réussi dans les années 1960, mais elle risque

1 Adjectif formé sur le nom COBOL, langage de programmation particulière-
ment aride et punitif.
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de ne pas résister aux sables mouvants de la sociologie réelle des
organisations des années 2000.

8.2 Où l’on commence à rêver à Unix
Les créateurs d’Unix, Ken Thompson et Dennis M. Ritchie,

avaient une forte expérience de Multics, et ils savaient aussi bien
ce qu’ils voulaient en retenir que ce qu’ils en rejetaient. Ils en rete-
naient notamment les aspects suivants :

— Le système est écrit non pas en assembleur, mais dans un
langage de haut niveau (PL/1 pour Multics, C pour Unix).
Seuls quelques fragments du code du noyau intimement liés
à un matériel particulier sont en assembleur. Ceci facilite le
portage 2 du système sur un nouveau modèle d’ordinateur.
On a pu dire que le langage C était un assembleur portable.

— Le système de commandes qui permet de piloter le système
est le même interpréteur qui permet à l’utilisateur d’exécuter
des programmes et des commandes, et il donne accès à un
langage de programmation. C’est le shell.

— Le système de fichiers d’Unix est très inspiré de celui de
Multics, d’où vient aussi l’idée d’exécuter chaque commande
comme un processus distinct.

— Mais surtout, comme Dennis Ritchie l’a expliqué dans son
article de 1979, ce que lui et ses collègues des Bell Labora-
tories voulaient retrouver de Multics en créant Unix, c’était
un système qui engendrait pour ainsi dire spontanément la
communication et l’échange d’expériences entre ses adeptes.

Cette qualité, partagée par Multics et Unix, d’être propice à
la création d’une communauté ouverte et communicative, mérite
que l’on s’y arrête. Lorsque Multics a été introduit dans l’Institut
statistique évoqué ci-dessus, il y a immédiatement cristallisé la for-
mation d’une petite communauté intellectuelle, que la Direction n’a

2 Porter un logiciel d’un ordinateur à un autre ou d’un système à un autre
signifie l’adapter aux caractéristiques techniques particulières de ce nouveau
contexte. L’opération s’appelle un portage. Un logiciel pour le portage duquel
le travail à faire est nul ou négligeable est dit portable ; cette qualité, très
recherchée, s’appelle portabilité. Unix est le système d’exploitation le plus
portable parce qu’il est écrit pour l’essentiel dans un langage évolué (C)
plutôt que dans l’assembleur d’un processeur particulier, et grâce à la bonne
abstraction de ses primitives, grâce aussi à la simplicité et à l’élégance de
son architecture générale.
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d’ailleurs eu de cesse de résorber parce qu’elle n’en comprenait pas
la fécondité et qu’elle percevait son activité comme un gaspillage.
D’innombrables expériences similaires ont eu lieu autour de Mul-
tics et d’Unix, sans qu’une cause unique puisse leur être attribuée.
Le fait que ces systèmes aient été créés par des chercheurs, habi-
tués à l’idée que la connaissance soit objet de partage gratuit et
de communication désintéressée mais assortie de plaisir, est un élé-
ment. L’existence de logiciels commodes pour la création de textes,
le courrier électronique et les forums en ligne a aussi joué, mais
cette existence était-elle une cause ou une conséquence ? La nature
programmable du shell, l’accès possible pour tous aux paramètres
du système, inscrits dans des fichiers de texte ordinaires, encoura-
geaient un usage intelligent du système, et l’intelligence va de pair
avec l’échange.

Si l’on compare Multics et Unix aux systèmes industriels dispo-
nibles à l’époque, comme l’OS 360, GCOS 8 ou plus tard VMS
de Digital Equipment, il apparaît que ces derniers ne sont pas
conçus dans le même esprit : l’utilisateur dispose d’un mode d’em-
ploi du système, réputé contenir les solutions pour tout problème
qu’il pourrait se poser. Lorsque tout ceci est bien fait, comme par
exemple dans VMS, le système à mémoire virtuelle conçu pour l’or-
dinateur VAX, cela suscite un usage efficace et commode mais passif
du système.

L’auteur de ces lignes a été un utilisateur longtemps réticent
et sceptique d’Unix, dérouté par l’aspect « caisse à outils » du sys-
tème. VMS, que je pratiquais simultanément, avait été conçu par
une équipe de (très bons) ingénieurs, soucieux de livrer un pro-
duit homogène et cohérent, et ils avaient parfaitement réussi. La
meilleure preuve de cette réussite était la documentation du sys-
tème, souvent un aspect un peu négligé : celle de VMS était une
merveille de clarté et d’exhaustivité, au prix certes d’un nombre
impressionnant de mètres linéaires de rayonnage. Mais quel que
soit le problème à résoudre, on était sûr que la réponse était dans
la « doc ». Lorsque Digital Equipment a produit sa propre version
d’Unix, ils ont publié un petit manuel résumé des commandes Unix,
baptisé «The little grey book » (la couleur canonique de la documen-
tation Digital venait de virer de l’orange au gris). Par opposition,
la documentation VMS s’est trouvée baptisée « The big grey wall ».

Habitué donc à l’univers confortable et hyper-balisé de VMS, je
découvrais avec Unix un système de prime abord beaucoup moins
homogène, même si je devais découvrir plus tard que son homo-
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généité résidait ailleurs. Comme chaque commande Unix s’exécute
sous le contrôle d’un processus distinct, elle peut être assez décou-
plée du noyau du système. Cette modularité, qui est un avantage,
avait permis de confier l’écriture de beaucoup de commandes à des
étudiants en stage, quand elles n’étaient pas tout simplement des
contributions spontanées, et alors leur qualité et celle de leur do-
cumentation pouvaient être assez inégales.

De Multics les créateurs d’Unix rejetaient la lourdeur. La ten-
tation fatale, pour des auteurs de systèmes informatiques en géné-
ral, et de systèmes d’exploitation ou d’architectures de processeurs
tout particulièrement, consiste à céder au perfectionnisme et à réa-
liser des dispositifs qui ajouteront au système global une complexité
considérable pour résoudre des problèmes qui ne surgiront que très
rarement. Les problèmes rares peuvent se contenter de solutions
inefficaces mais simples. Force est de constater que les auteurs de
Multics n’ont pas évité cette ornière. VMS non plus d’ailleurs, qui
succédait aux merveilleux RSX-11M et autres IAS.

Frederick P. Brooks, le concepteur de l’OS/360, dans son livre
justement célèbre The Mythical Man-Month [23], décrit ce qu’il
appelle le syndrome du second système, et qui s’applique à Mul-
tics comme à l’OS/360 : une équipe constituée en grande partie
des mêmes hommes autour de Fernando Corbató avait développé
avec succès CTSS ; en s’attaquant à Multics ils ont voulu y intro-
duire tous les perfectionnements coûteux qu’ils avaient, avec sagesse
mais frustration, écartés de leur œuvre précédente. En informatique
comme ailleurs, point de salut sans une part de renoncement.

En fait, à la fin des années 1960, l’échec de Multics aux Bell Labs
était patent. L’équipe qui allait y concevoir Unix, autour de Ken
Thompson et Dennis Ritchie, comprit que Multics ne serait pas uti-
lisable pour un travail réel dans un délai raisonnable. De son côté le
propriétaire de Multics, la compagnie General Electric, se sentait
assez peu concerné par ce système développé par des chercheurs
universitaires et préférait commercialiser ses ordinateurs avec son
système conventionnel, GECOS. Lorsque Multics deviendrait utili-
sable, à la toute fin des années 1970, les ordinateurs qu’il pouvait
piloter étaient définitivement périmés et sans espoir de succession.

Dans un article de 1979 [109] Dennis Ritchie a décrit cette pé-
riode où les Bell Labs se retiraient du projet Multics. Ce processus
s’accompagnait d’un autre facteur d’incertitude : une réorganisa-
tion visait à séparer les équipes de recherche en informatique des
équipes de l’informatique opérationnelle ; ce genre de séparation,
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conforme aux vues des managers financiers efficaces et à jugeote
courte, a pour conséquence habituelle de diminuer les moyens dis-
ponibles pour la recherche et de réduire la qualité de l’informatique
opérationnelle, privée de stimulation intellectuelle. Le groupe de D.
Ritchie, K. Thompson, M. D. McIlroy et Joseph F. Ossanna sou-
haitait conserver l’environnement de travail luxueux que Multics
leur procurait à un coût d’autant plus exorbitant qu’ils en étaient
les derniers utilisateurs. Pour ce faire ils allaient développer leur
propre système sur un petit ordinateur bon marché et un peu in-
utilisé récupéré dans un couloir, un PDP 7 de Digital Equipment.
Unix était sinon né, du moins conçu.

8.3 Les hommes d’Unix 3

Le lecteur, à la fin de l’alinéa précédent, se sera peut-être fait
la réflexion que pour que des employés d’une grande entreprises
puissent développer un système d’exploitation, même ascétique,
pendant leur temps libre, il fallait que leur encadrement ne soit
pas trop rigide. Parce que ce même lecteur devrait maintenant être
convaincu que le système d’exploitation est l’objet technique le plus
complexe que l’homme ait conçu et réalisé au cours du XXe siècle.
Quelle était au fait la mission théorique de ces jeunes gens ? Qui
contrôlait la réalisation de leurs objectifs ?

Peter H. Salus a écrit un livre (A Quarter Century of UNIX,
[114]) qui met en scène les principaux acteurs de la naissance
d’Unix. De prime abord, on est frappé en lisant ces aventures de
découvrir que cette création, qui a eu des répercussions considé-
rables dans les domaines technique autant qu’industriel et écono-
mique, n’a vraiment été décidée ni par un groupe industriel, ni par
un gouvernement, ni par aucun organisme doté de pouvoir et de
moyens financiers importants. On peut d’ailleurs en dire autant de
l’Internet (pour des détails, voir la section 6.5.3), une autre création
aux répercussions considérables, d’ailleurs très liée à Unix et issue
du même milieu social.

À la lecture du livre de Salus, quiconque a un peu fréquenté les
milieux scientifiques d’une part, les milieux industriels de l’autre,

3 Effectivement, peu de femmes dans cette histoire. Raison de plus pour men-
tionner la regrettée Evi Nemeth, et, peut-être pas tout à fait dans le même
domaine ni à la même époque, Radia Perlman, spécialiste des protocoles de
réseau, et Elizabeth Zwicky.
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ne peut manquer d’être frappé par le caractère décalé, pour ne pas
dire franchement marginal, de la plupart des acteurs de la genèse
unixienne.

Le monde de la science a sa hiérarchie, où les disciplines spécu-
latives et abstraites ont le pas sur les recherches appliquées et les
disciplines descriptives, et où bien sûr les chercheurs sont patriciens
et les ingénieurs et techniciens ilotes, entourés d’une population au
statut incertain, les étudiants en thèse ou en post-doc, dont une mi-
norité d’élus accédera au patriciat mais dont la majorité ne devien-
dra même pas ilote, contrainte à descendre aux enfers, c’est-à-dire
le monde réel des entreprises industrielles et commerciales.

Dans cet univers social, l’informatique, discipline récente et mal
identifiée, perçue (au mépris de toute vraisemblance, mais qu’im-
porte au sociologue) comme un vague sous-produit de la branche
la moins noble des mathématiques (l’analyse numérique), se situe
plutôt vers le bas. Au sein de la discipline, le haut du pavé est
tenu par les domaines où il y a une théorie possible, de préférence
mathématique ou à la rigueur physique : linguistique de la program-
mation, algorithmique (surtout numérique ou logique), traitement
de l’image ou du signal en général. Les systèmes d’exploitation dis-
posent de tout un arsenal de concepts, mais pas d’une théorie, c’est
ainsi ; de surcroît ils sont bien près du matériel, cette chose qui a
des relents de cambouis et de sueur. Donc ils sont en bas. Alors des
ingénieurs qui s’occupent de systèmes d’exploitation...

Le monde industriel (nous nous plaçons à l’époque de la nais-
sance d’Unix, avant la prise de pouvoir par les financiers à costume
noir et cortex de calmar) a un système de valeurs symétrique de
celui de la science : on y respecte celui qui fait des choses, de vraies
choses. C’est un univers dominé par les ingénieurs, qui sont censés
se coltiner avec la matière. On sait bien qu’une industrie dyna-
mique doit avoir des centres de recherche, et que dans ces endroits
travaillent des types bizarres appelés chercheurs, mais même si on
ne les méprise pas vraiment, ils sont considérés avec une certaine
distance.

Or que nous apprend Salus ? Thompson et Ritchie étaient cher-
cheurs dans une entreprise industrielle. Au fur et à mesure de leur
apparition, les noms de ceux qui font fait Unix, parmi eux Kirk
McKusick, Bill Joy, Eric Allman, Keith Bostic, sont toujours ac-
compagnés d’un commentaire de la même veine : ils étaient étu-
diants undergraduates ou en cours de PhD, et soudain ils ont dé-
couvert qu’Unix était bien plus passionnant que leurs études. Bref,
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les auteurs d’Unix n’ont jamais emprunté ni la voie qui mène les
ingénieurs perspicaces vers les fauteuils de Directeurs Généraux, ni
celle que prennent les bons étudiants vers la tenure track, les chaires
prestigieuses, voire le Nobel 4.

8.4 Introduction à la démarche unixienne
Comme le note Christian Queinnec aux premiers mots de son

livre « ABC d’Unix » [105], « UNIX est un système de production
de programme ». Et, conformément à l’esprit d’Unix, cette assertion
est à prendre à la fois de façon extensive : ce système comporte tout
ce dont peut rêver un auteur de programme, et, aussi, de façon
restrictive : malgré quelques concessions récentes, il ne comporte
fondamentalement rien d’autre. Les Unix modernes tels que Linux
sont certes dotés de logiciels utilisables par le commun des mortels,
avec des interfaces graphiques, mais les vrais unixiens n’en abusent
pas.

La documentation canonique d’Unix (les man pages) constitue
une excellente entrée en matière : aucun effort pédagogique, au-
cune de ces redondances qui facilitent l’acquisition d’une notion.
Les mots en sont comptés, aucun ne manque mais pas un n’est de
trop. La lecture attentive (très attentive) de ces pages délivre une
information nécessaire et suffisante à l’usage du système, d’où une
locution proverbiale souvent proférée par les Unixiens expérimentés
en réponse à un néophyte qui demande de l’aide : « RTFM ! » (Read
the f... manual !). On le voit, Unix est à l’opposé de ces logiciels à
interface graphique dont les vendeurs laissent croire qu’ils peuvent
être utilisés sans lire aucune documentation 5.

4 On sait qu’Alfred Nobel, lorsqu’il créa ses Prix, ne voulut pas en attribuer
aux Mathématiques. La légende dit que cette exclusion serait due à une trop
grande sympathie qu’aurait éprouvée Madame Nobel pour un certain ma-
thématicien. Pour se consoler les mathématiciens créèrent la médaille Fields,
décernée tous les quatre ans. Les informaticiens ont encore plus besoin de
consolation, puisqu’ils n’ont même pas réussi à séduire Madame Nobel. Ils
ont créé le Turing Award, qui a notamment été décerné, parmi nos person-
nages, à Maurice V. Wilkes, E.W. Dijkstra, Donald E. Knuth, C. Antony
R. Hoare, Frederick P. Brooks, Fernando Corbató, Ken Thompson, Den-
nis M. Ritchie, Leslie Lamport, Whitfield Diffie et Martin Hellman. Voir
http://www.acm.org/awards/taward.html pour plus de détails.

5 Cette prétention flatte la paresse naturelle de l’utilisateur, mais elle est fal-
lacieuse. Il est certes possible, avec tel logiciel de traitement de texte dont

http://www.acm.org/awards/taward.html
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À qui était, comme l’auteur, habitué aux systèmes des grands
ordinateurs IBM des années 1970, ou au système VMS que Digital
Equipment Corporation (DEC) avait développé pour ses ordina-
teurs VAX, la transition était rude. Les systèmes d’IBM et de DEC
étaient conçus dans le but d’élargir l’audience de l’informatique à
des utilisateurs moins professionnels, à une époque où les micro-
ordinateurs n’existaient pas. Pour ce faire, la syntaxe de leur lan-
gage de commandes cherchait à s’adoucir en utilisant des lexèmes
plus proches du langage humain, en tolérant des abréviations ou au
contraire des tournures plus bavardes mais plus faciles à mémori-
ser. La réponse du système à une commande était aussi édulcorée :
présentation aérée, commentaires explicatifs.

Pour un Unixien, toutes ces variations pédagogiques ne sont que
concessions coupables à l’ignorance informatique des secrétaires et
des comptables. L’initiation informatique des ces professions res-
pectables est peut-être un objectif louable, mais dont il ne veut

le nom signifie « mot » dans une langue germanique et insulaire, de créer
facilement un document laid et peu lisible, mais dès lors que l’on veut un
résultat présentable il faut se plonger dans la documentation et découvrir
que ce logiciel est complexe, tout simplement parce que la typographie est
complexe.
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rien savoir, et Unix non plus, parce que pour un développeur 6 ces
aides pédagogiques sont autant d’obstacles à son travail.

La syntaxe des commandes Unix est sèche comme un coup de
trique, d’une part parce qu’elles sont destinées à des professionnels
qui les connaissent par cœur à force de les utiliser à longueur de
journée, d’autre part parce qu’elles constituent un langage de pro-
grammation (le shell) qui permettra d’automatiser des opérations
répétitives, et que pour un langage toute souplesse syntaxique se
paye en espace et en temps (il faut bien écrire les instructions qui
vont interpréter les commandes, et autant de variations possibles
autant de dizaines de lignes de code en plus).

La réponse du système à l’utilisateur qui lui soumet une com-
mande est tout aussi austère, le plus souvent d’ailleurs il n’y a pas
de réponse. Ainsi, si vous voulez modifier le nom d’un fichier, et
que le nouveau nom que vous souhaitez lui donner est déjà pris par
un autre fichier, si le renommage est effectué le fichier homonyme
sera détruit. Les systèmes à l’usage des secrétaires, des comptables
ou des présidents d’université, face à un tel cas, posent la ques-
tion à l’utilisateur : « veux-tu vraiment détruire l’autre fichier ? »,
ou renomment le fichier menacé. Pour Unix rien de tel : le fichier
est froidement détruit sans même une notification post mortem.

6 C’est avec Unix que « développeur » a supplanté « programmeur ». Ces deux
termes ont rigoureusement le même sens, « personne dont le métier est la
création de programmes informatiques », mais « programmeur »avait été vic-
time d’une dévalorisation injuste. Les premiers managers de l’informatique
ont pensé y reproduire un schéma qui était déjà en déclin dans l’industrie :
l’ingénieur conçoit, l’ouvrier fait. En informatique l’analyste concevrait ce
que le programmeur ferait. Erreur. L’ingénieur disposait, pour transmettre à
l’ouvrier la description de ce qu’il devait faire, d’un outil précis et rigoureux,
le dessin industriel. Rien de tel en informatique, malgré des efforts qui durent
encore pour créer des systèmes de spécification infaillibles dont UML est le
dernier avatar. Et à cela il y a des raisons : un ordinateur doté de son système
d’exploitation et de ses langages de programmation n’est pas seulement in-
finiment plus versatile et plus souple qu’un étau-limeur ou qu’une fraiseuse,
il est surtout d’une tout autre nature. Il traite de l’information, et comme
nous l’avons vu l’information n’est que parce qu’imprévisible. Et l’informa-
tion qui décrit un programme à réaliser est de la méta-information, puisque
le programme est lui-même de l’information. De ce fait la vraie difficulté
réside bien toujours dans l’écriture du programme, qui est un exercice in-
croyablement délicat et laborieux. E.W. Dijkstra se définit lui-même comme
programmeur. Mais rien n’y fait, le programmeur sent le cambouis et la
sueur, alors que son remplaçant le développeur arbore (jusqu’à la retraite et
au-delà) l’uniforme seyant et l’éthos décontracté des étudiants californiens.
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C’est un système pour les vrais hommes, qui savent ce qu’ils font,
assument leurs erreurs et savent les réparer.

Mais à cet ascétisme il y a une raison encore plus dirimante,
et qui n’est pas de l’ordre du sado-masochisme. L’invention sans
doute la plus géniale d’Unix est la possibilité, par la simple syntaxe
du shell, de réaliser des opérations de composition de processus, au
sens algébrique du terme.

Les opérations les plus simples consistent à rediriger les résul-
tats de sortie d’une commande vers un fichier, et à donner en entrée
à une commande des données stockées dans un fichier, ce qui n’est
pas encore de la composition de processus. Mais pour réaliser ceci
il fallait déjà standardiser les formats d’entrée et de sortie des com-
mandes, et découpler les mécanismes d’entrée et de sortie, pour
introduire les notions d’entrée standard et de sortie standard, ce
qui ouvrait la voie à des réalisations plus ambitieuses.

L’opérateur de composition de processus en séquence est « ; ».
On remarque la concision. « a ; b »se lit : exécuter la commande a,
puis la commande b. La plupart des commandes Unix s’exécutent
comme un processus indépendant. Le lancement d’un programme
créé par un utilisateur obéit à la même syntaxe et aux mêmes règles,
ce qui encourage les développeurs à utiliser les conventions des com-
mandes Unix, et ainsi à contribuer à l’enrichissement du système.

L’opérateur de composition de processus parallèles asynchrones
est « & ». « a & b »se lit : lancer l’exécution de a, puis sans at-
tendre qu’elle se termine lancer aussitôt b. Les deux processus se-
ront concomitants (et concurrents pour l’acquisition du contrôle du
processeur).

L’opérateur de composition de processus parallèles synchrones
est « | ». « a | b »se lit : lancer l’exécution de a, puis lancer b qui
va aussitôt attendre la première ligne de résulat issue de a, la traiter
puis se bloquer en attente de la suivante, etc.

Prenons un exemple simple : je veux la liste de tous les processus
en cours d’exécution qui exécutent le serveur WWW Apache, avec
leur numéro de processus.

La commande qui affiche la liste des processus s’appelle « ps »,
qui doit, pour afficher non seulement les processus de l’utilisateur
mais tous les autres, être agrémentée des paramètres a et x, ce qui
s’écrit donc « ps ax ». Cette commande va produire la liste de tous
les processus, avec leur numéro et le nom du programme exécuté,
à raison d’une ligne par processus. Je veux filtrer cette liste pour
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n’en retenir que les lignes où le nom de programme qui apparaît est
apache.

Parmi les plus belles commandes d’Unix il faut citer grep (pour
Global (search for) Regular Expression and Print, analyseur général
d’expressions régulières). Cette commande peut faire des choses
très savantes, mais nous allons l’utiliser de façon très simple, pour
retrouver une chaîne de caractères dans le texte soumis à son entrée
standard. « grep apache » signifie : si la ligne de l’entrée standard
contient le texte « apache », afficher le texte à l’écran, sinon passer
à la suivante.

Nous allons composer les deux commandes « ps ax » et « grep
apache » par l’opérateur de composition parallèle synchrone « | » :

ps ax | grep apache

Chaque ligne issue de la première commande sera soumise à la
seconde pour analyse, ce qui réalisera le filtre souhaité :

> ps ax | grep apache
284 ? S 0:00 /usr/sbin/apache
295 ? S 0:00 /usr/sbin/apache
296 ? S 0:00 /usr/sbin/apache
297 ? S 0:00 /usr/sbin/apache
298 ? S 0:00 /usr/sbin/apache
299 ? S 0:00 /usr/sbin/apache
434 pts/0 S 0:00 grep apache

Je reçois ainsi la liste de tous les processus Apache avec leur
numéro, et en prime le processus d’analyse, puisque sa ligne de
commande comporte elle aussi le texte apache.

Cette métaphore du filtre est promue au rang de paradigme par
UNIX : les programmes vraiment unixiens doivent être écrits comme
des filtres, c’est à dire recevoir un flux de caractères sur leur entrée
standard et émettre un flux de caractères (convenablement modifié)
sur leur sortie standard, ce qui permet de les combiner ad libitum.

C’est le livre de Jean-Louis Nebut [96] qui me semble-t-il ex-
plicite le mieux la syntaxe du shell en termes de filtres et de com-
position de processus. Il est aisé de concevoir que le fonctionne-
ment d’un tel système suppose une discipline assez ascétique dans
la syntaxe des commandes et leur mode d’interaction. Notamment,
puisqu’elles doivent être les syntagmes d’un langage de program-
mation, dont les programmes sont usuellement appelés shell scripts,
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il n’est pas souhaitable que les commandes engagent un dialogue
avec l’utilisateur, qui dans ce cas ne sera pas un humain mais le
système d’exploitation.

8.5 Dissémination d’Unix
8.5.1 Un système exigeant

Nous venons de dire qu’Unix était un système de production de
programme, conçu pour satisfaire les programmeurs professionnels
et à peu près personne d’autre. Comment expliquer alors qu’il se
soit répandu dans beaucoup d’autres domaines, souvent au prix de
beaucoup de crises de nerfs de la part d’utilisateurs furieux ? Parce
qu’il faut bien dire qu’Unix n’est pas un système confortable pour
qui n’est pas disposé à y consacrer la moitié de son temps de travail.

L’auteur de ces lignes, il y a de nombreuses années, a com-
pris que s’il voulait espérer garder l’estime de certains collègues il
lui fallait savoir se servir assez couramment d’Unix et surtout de
l’éditeur de texte Emacs avec lequel d’ailleurs il compose le présent
texte. Cette prise de conscience a entraîné de nombreuses et lourdes
conséquences. Il en va d’Emacs comme d’Unix : aucun espoir d’ac-
quérir un minimum de maîtrise de cet éditeur (génial) sans plusieurs
heures de pratique quotidienne, qui au bout de quelques mois per-
mettront de savoir raisonnablement utiliser quelques dizaines parmi
ses 14 000 et quelques fonctions, sans parler du langage de program-
mation qui lui est incorporé. Bien, il fallait s’y mettre, et pour cela
une seule solution : utiliser Unix et Emacs pour tout, rédaction de
documents, courrier électronique, lecture des News.

De ce type de situation on serait tenté d’inférer une conception
un peu paradoxale du métier d’informaticien : le travail consisterait
essentiellement à rester en symbiose avec le système et les outils de
base comme Emacs, à se tenir au courant de leurs évolutions en fré-
quentant des collègues, par des rencontres, des colloques, les News,
à essayer les nouveaux logiciels dès leur sortie, et, logiquement, à
en produire soi-même. Il va de soi que dans cette perspective les
demandes trop précises d’un employeur qui n’aurait pas compris ce
processus seraient perçues comme autant d’obstacles mesquins. Le
trait ici est bien sûr forcé, mais l’employeur avisé n’oubliera pas que
ses ingénieurs, pour rester compétents, ont besoin de temps pour
les activités énoncées ci-dessus.
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La conclusion qui semblerait logique après la lecture des lignes
précédentes serait qu’Unix aurait dû disparaître sous les coups fu-
rieux des DRH et des chefs de projet, ou du moins aurait dû rester
cantonné à un petit monde de chercheurs, de développeurs et de
hobbyistes. Il n’en a rien été pour au moins deux raisons exposées
à la section 8.5.2.

8.5.2 Naissance d’une communauté
Lorsqu’après quelques années de travail assez confidentiel il n’a

plus été possible à AT&T (American Telegraph and Telephone)
d’ignorer le travail de Thompson et Ritchie, celui-ci avait acquis
une certaine ampleur et une certaine notoriété, notamment dans
le monde universitaire. AT&T décida de vendre Unix assez cher
aux entreprises 7, et se laissa convaincre d’en concéder (en 1974)
l’usage gratuit aux Universités. Cette décision fut à l’origine de la
popularité d’Unix dans le monde universitaire.

C’est en 1974 que Vinton Cerf (de l’Université Stanford) et Ro-
bert Kahn (de BBN) publièrent le premier article sur TCP/IP. Le
travail sur les protocoles fut intense. En 1977 TCP/IP atteignit
une certaine maturité, et c’est de ce moment que l’on peut dater la
naissance de l’Internet expérimental.

En 1979 la DARPA lançait des appels d’offres assez généreux
auprès des centres de recherche prêts à contribuer au développement
de TCP/IP, elle souhaitait notamment l’adapter au VAX 11/780,
l’ordinateur à mots de 32 bits que DEC venait de lancer (les PDP-
11 étaient des machines à mots de 16 bits). Bill Joy, du Computer
Systems Research Group (CSRG) de l’Université de Californie à
Berkeley et futur fondateur de Sun Microsystems, convainquit la
DARPA qu’Unix serait une meilleure plateforme que VMS pour
ce projet parce qu’Unix avait déjà été porté sur plusieurs types
d’ordinateurs.

De fait, dès 1977 le CSRG avait créé une version expérimentale
d’Unix (la « 1BSD », pour Berkeley System Distribution) dérivée de

7 En fait à cette époque AT&T possédait le monopole des télécommunications
aux États-Unis, en contrepartie de quoi il lui était interdit d’avoir une vé-
ritable action commerciale dans d’autres domaines comme l’informatique.
Lorsque ce monopole fut aboli et AT&T démantelé, en 1982, Unix put de-
venir une marque commerciale, et AT&T se lança même dans la fabrication
d’ordinateurs sous Unix, sans grand succès.
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la Sixth Edition des Bell Labs. La Seventh Edition de 1978 tournait
sur DEC PDP-11 et avait été portée sur un ordinateur à mots de
32 bits, l’Interdata 8/32 : elle fut portée sur VAX sous le nom de
32V, et le CSRG (nommément Bill Joy et Ozalp Babaog̃lu) réunit
ces diverses souches pour créer la 3BSD en 1979.

Le financement de la DARPA devait stimuler les deux projets :
le développement de cette nouvelle version d’Unix nommée « Unix
BSD », résolument tournée vers le monde des réseaux, et celui de
ce que l’on connaît aujourd’hui sous le nom de TCP/IP. De ce jour,
les développements respectifs de TCP/IP, de l’Internet et d’Unix
furent indissociables. La souche Bell Labs continua son évolution
indépendamment pour engendrer en 1983 la version System V . La
suite de cette histoire se trouve ci-dessous à la section 8.5.3.

La disponibilité pratiquement gratuite pour les Universités, les
subventions généreuses de la DARPA, c’était deux contributions
de poids au succès d’Unix. Un troisième ingrédient s’y ajouta, sans
lequel les deux autres n’eussent sans doute pas suffi : ce monde du
réseau des centres de recherche était par ses traditions prédisposé
aux échanges intellectuels, et justement la construction du réseau
lui fournissait le moyen de s’y adonner de façon décuplée. Dans
le monde scientifique d’antan, les contacts avec l’extérieur un peu
lointain étaient l’apanage des patrons de laboratoire, qui allaient
aux conférences où ils accédaient à des informations qu’ils pou-
vaient ensuite distiller pendant des séminaires suivis religieusement
par les disciples. Avec le réseau, de simples étudiants ou de vul-
gaires ingénieurs pouvaient entrer en contact directement avec des
collègues prestigieux. En outre, ces échanges étaient indispensables,
parce qu’Unix était gratuit, mais sans maintenance, les utilisateurs
étaient contraints de s’entr’aider pour faire fonctionner leurs sys-
tèmes. Je me rappelle encore en 1981 les collègues de l’IRCAM qui
administraient un des premiers VAX sous Unix d’Europe, toute
leur maintenance logiciel était en direct avec Berkeley. Une com-
munauté (scientifique ? technique ? dans les marges de la science et
de la technique ?) allait se créer. L’association USENIX en serait
une des instances visibles, mais elle resterait largement informelle.

Il est à noter que cette communauté serait assez vite interna-
tionale : pour les managers d’AT&T qui s’étaient laissé convaincre
de concéder Unix gratuitement aux chercheurs, comme pour la
DARPA, le monde informatisable se limitait aux États-Unis et
à leur extension canadienne, ils n’avaient pas un instant envisagé
l’existence d’Universités en Europe ou en Australie, et encore moins
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qu’elles puissent s’intéresser à Unix. Pourtant, Salus énumère les
institutions inscrites à la première liste de diffusion électronique,
telles que citées par le numéro 1 de UNIX NEWS de juillet 1975,
et on y trouve déjà l’Université catholique de Louvain et l’Univer-
sité hébraïque de Jérusalem. N’oublions pas que le premier article
consacré à Unix était paru dans les Communications of the Asso-
ciation for Computing Machinery (CACM), l’organe de la princi-
pale société savante informatique, en juillet 1974, sous la plume de
Thompson et Ritchie, seulement un an auparavant donc.

Accéder au réseau, pour les non-Américains, posait quand même
un problème de taille : financer une liaison téléphonique privée
transatlantique n’était, et n’est toujours pas, à la portée d’un bud-
get de laboratoire. Ce n’est pas avant la décennie 1980 que les
subventions conjuguées de la National Science Foundation (NSF)
américaine et, par exemple, du ministère français de la Recherche
permettront un accès convenable pour l’époque à ce qui était de-
venu entre-temps l’Internet. Mais dès les années 1970 des groupes
Unix quasi militants apparaissaient dans quelques pays : Australie
en 1975, Grande-Bretagne en 1976, Pays-Bas en 1978, France en
1981. Unix se propage sur bande magnétique, son usage est recom-
mandé de bouche à oreille, c’est assez analogue au phénomène des
radio-amateurs dans les années 1960 : tout le plaisir est de réussir à
établir une communication avec le Japon ou le Kenya, peu importe
après tout ce que l’on se dit, mais le sentiment d’appartenance à la
même société d’initiés est d’autant plus fort que les gens sérieux et
raisonnables ne comprennent pas.

Ce milieu social d’étudiants en rupture de PhD et d’ingénieurs
de centres de calcul dont les responsables ont renoncé à comprendre
la teneur exacte de l’activité va assurer le développement d’Unix et
de l’Internet, tant les deux sont indissociables. Ce faisant ils vont
engendrer une nouvelle entité technique et économique, le logiciel
libre. Tout cela sans maîtrise d’ouvrage, sans cahier des charges,
sans business plan, sans marketing, sans conduite du changement
ni plan qualité, ni tout un tas d’autres choses soi-disant indispen-
sables.

Avant d’aborder la question du logiciel libre, il faut s’interroger
sur un phénomène quand même surprenant : nous avons dit qu’Unix
était très inconfortable pour tout autre qu’un développeur utilisant
ses diverses fonctions à longueur de journée. Comment expliquer
alors qu’en une dizaine d’années il se soit vu reconnaître une posi-
tion hégémonique dans tout le monde de la recherche ? Parce que
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même dans les départements d’informatique des universités et des
centres de recherche, la majorité des gens ne passent pas leur temps
à programmer, il s’en faut même de beaucoup, alors ne parlons pas
des biologistes ou des mathématiciens.

La réponse n’est pas univoque. Mon hypothèse est que si cette
population d’étudiants et d’ingénieurs, pauvre en capital social et
en légitimité scientifique, a pu se hisser à cette position hégémo-
nique, c’est que la place était à prendre. Pendant les années 1960
et 1970, on assiste aux tentatives des autorités académiques légi-
times de l’informatique, dont les porte-drapeaux ont nom Dijkstra,
Hoare, Knuth, ou en France Arsac, Ichbiah, Meyer, pour imposer
leur discipline comme une science à part entière, égale de la Phy-
sique ou de la Mathématique. Pour ce faire ils élaborent des formali-
sations, des théories, des concepts souvents brillants. Peine perdue,
ils échouent, malgré le succès technique et économique retentissant
de l’informatique, ou peut-être même victimes de ce succès. Le pu-
blic, fût-il universitaire, ne discerne pas l’existence d’une science
derrière les objets informatiques qui deviennent de plus en plus ses
outils de travail quotidiens. Les raisons de cet état de fait restent
en grande partie à élucider, sur les traces de chercheurs en histoire
de l’informatique tel en France un Pierre-Éric Mounier-Kuhn. Ce
désarroi identitaire de l’informatique universitaire snobée par ses
collègues laissait le champ libre à des non-mandarins d’autant plus
dépourvus de complexes qu’ils n’avaient aucune position à défendre
et que le contexte économique d’Unix lui permettait de se dévelop-
per dans les marges du système, sans gros budgets hormis le coup
de pouce initial de la DARPA. Les financements absorbés par Unix
et TCP/IP sont assez ridicules si on les compare à ceux de l’intel-
ligence artificielle, sans doute la branche la plus dispendieuse et la
plus improductive de la discipline 8, ou même à ceux du langage
Ada, projet sur lequel se sont penchées toutes les bonnes fées de
la DARPA et du monde académique, et qui finalement n’a jamais

8 Pour être juste, il faut dire que si l’intelligence artificielle au sens fort du
terme a été une telle source de déceptions depuis l’article fondateur de Mc-
Culloch et Pitts en 1943 qu’il est difficile de résister à la tentation de parler
d’imposture, ses financements somptueux ont permis la réalisation de pro-
duits dérivés du plus grand intérêt, comme les langages LISP, les interfaces
graphiques à fenêtres, le système d’édition de texte Emacs et bien d’autres,
souvent d’ailleurs des logiciels libres.
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percé en dehors des industries militaires et aérospatiales (ce n’est
déjà pas si mal, mais les espoirs étaient plus grands).

Finalement, les outsiders unixiens l’ont emporté par leur sé-
duction juvénile et leur occupation du terrain pratique, qui leur
a permis de proposer à telle ou telle discipline les outils qui lui
manquaient au moment crucial : le système de composition de do-
cuments TEX pour les mathématiciens, qui seul répondait à leurs
exigences typographiques, et pour les informaticiens toutes sortes
de langages et surtout d’outils pour créer des langages. J’ai vu dans
le monde de la biologie Unix supplanter VMS : il faut bien dire que
les tarifs pratiqués par Digital Equipment et la rigidité de sa po-
litique de produits lui ont coûté la domination d’un secteur qui
n’avait pas beaucoup de raisons de lui être infidèle. Un collègue
m’a confié un jour « Le principal argument en faveur d’Unix, c’est
que c’est un milieu sympathique ». Cet argument m’avait paru ré-
voltant, mais je crois qu’il avait raison, si l’on prend soin de préciser
que par « sympathique » on entend « propice aux libres échanges
intellectuels ».

8.5.3 Le schisme
Une si belle unanimité ne pouvait pas durer (et aurait été de

mauvais augure). La souche BSD manifestait une certaine indé-
pendance par rapport à l’orthodoxie AT&T. À la section ci-dessus
8.5.2 nous avons laissé d’une part les versions issues de la souche
Bell Labs, regroupées à partir de 1983 sous l’appellation System
V , de l’autre celles issues de la souche BSD, qui en 1983 en sont
à la version 4.2BSD. De cette époque on peut vraiment dater la
séparation de deux écoles rivales. On pourra se reporter au livre de
McKusick et ses coauteurs [84] qui donne dans ses pages 5 et 6 un
arbre phylogénétique complet du genre Unix.

Quelles étaient les différences entre System V et BSD? En fait la
seule différence vraiment profonde, perceptible dans l’architecture
du noyau, était le code destiné à la communication entre processus
(et de ce fait au fonctionnement du réseau), organisé dans les sys-
tèmes BSD selon le modèle de socket que nous avons évoqué à la
section 6.6.1, tandis que les System V utilisaient un autre modèle,
moins versatile, baptisé STREAMS. BSD fut aussi en avance pour
adopter un système de mémoire virtuelle à demande de pages et
un système de fichiers amélioré (Fast File System). Autrement cer-
taines commandes du shell étaient différentes, ainsi que le système
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d’impression et l’organisation des fichiers de paramètres du système
(répertoire /etc), etc. La différence était surtout perceptible pour
les ingénieurs système et pour les développeurs de logiciels proches
du noyau.

Au fur et à mesure qu’Unix se répandait, certains industriels en
percevaient l’intérêt commercial et lançaient des gammes de ma-
tériels sous Unix. Bill Joy et certains de ses collègues de Berkeley
créaient en 1982 Sun Microsystems dont les ordinateurs à base de
processeurs Motorola 68000 mettaient en œuvre une version déri-
vée de BSD, SunOS. Chez DEC c’était Ultrix. HP-UX de Hewlett-
Packard et AIX d’IBM étaient de sensibilité System V. Dès 1980
Microsoft avait lancé Xenix ; à ce sujet il convient d’ailleurs de no-
ter qu’à cette époque Bill Gates considérait Unix comme le système
d’exploitation de l’avenir pour les micro-ordinateurs ! AT&T lançait
ses propres microprocesseurs et ses propres ordinateurs (la gamme
3B) sous Unix, qui n’eurent aucun succès : le démantèlement du
monopole d’AT&T sur les télécommunications aux États-Unis au
début des années 1980 lui donnait l’autorisation de commercialiser
des ordinateurs, mais cela ne suffit pas à assurer le succès de cette
gamme de machines...

En fait les différences idéologiques étaient plus tranchées que les
différences techniques. Le monde de la recherche et de l’université,
ouvert sur les réseaux, penchait pour BSD, issu du même univers,
cependant que le monde de l’entreprise avait tendance à se méfier
de l’Internet (ou à lui être indifférent) et à se tourner vers la version
de la maison-mère, System V.

Il y eut des trahisons sanglantes et impardonnées : en 1992,
Sun, porte-drapeau du monde BSD avec SunOS 4.1.3, à l’époque le
meilleur Unix de l’avis de la communauté des développeurs, conclut
avec AT&T des accords d’ailleurs sans lendemain aux termes des-
quels il passait à System V sous le nom de Solaris, honni par les
puristes BSD.

Ce qui est certain, c’est que ces luttes de clans et ce culte de
la petite différence ont beaucoup nui à la diffusion d’Unix et beau-
coup contribué au succès des systèmes Windows de Microsoft. La
communauté des développeurs a également déployé tous ses efforts
pour combattre toute tentative de développer au-dessus d’Unix et
du système de fenêtrage X une couche d’interface graphique « à
la Macintosh », qui aurait rendu le système utilisable par des non-
professionnels. De tels systèmes apparaissent aujourd’hui (Gnome,
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KDE), alors que la bataille a été gagnée (au moins provisoirement)
par Windows.

On peut aujourd’hui considérer que le schisme BSD-System V
est résorbé dans l’œcuménisme : tous les System V ont des sockets
(pour faire du TCP/IP il faut bien) et tous les BSD ont le système
de communication inter-processus (IPC) STREAMS de System V,
notamment. Mais l’idéologie BSD reste toujours vivace.

8.6 Aux sources du logiciel libre
8.6.1 Principes

Le logiciel libre mobilise beaucoup les esprits en ce début de
millénaire. La définition même de la chose suscite de nombreuses
controverses dues en partie au fait que le mot anglais free signifie
à la fois libre et gratuit. Si l’on s’en tient à une acception res-
trictive, l’expression logiciel libre désigne un modèle économique
et un mouvement associatif créés en 1984 par un informaticien de
génie, Richard M. Stallman, auteur depuis 1975 d’un logiciel extra-
ordinaire, Emacs. En 1983, Stallman, qui travaillait au laboratoire
d’intelligence artificielle du MIT, excédé par les restrictions au dé-
veloppement d’Unix induites par les droits de propriété industrielle
d’AT&T et de quelques autres industriels 9, fonde le projet GNU
(“GNU is Not Unix”) destiné à créer un système d’exploitation libre
de droits et dont le texte source serait librement et irrévocablement
disponible à tout un chacun pour l’utiliser ou le modifier.

L’année suivante, Stallman crée la Free Software Foundation
(FSF) pour « promouvoir le droit de l’utilisateur d’ordinateur à uti-
liser, étudier, copier, modifier et redistribuer les programmes d’or-
dinateur », c’est à dire étendre le modèle du projet GNU à d’autres
logiciels. Un corollaire indissociable de ce principe est que le texte
source du logiciel libre doit être accessible à l’utilisateur, ainsi que
la documentation qui permet de l’utiliser. Cette clause confère à
tout un chacun le moyen de modifier le logiciel ou d’en extraire
tout ou partie pour une création nouvelle. Pour assurer la péren-

9 En fait l’ire fondatrice qui décida de la vocation prophétique du Maître était
dirigée contre Xerox et son pilote d’imprimante... Felix culpa. Le lecteur
remarquera que malgré leurs péchés AT&T et Xerox jouent un rôle capital
dans l’histoire de l’informatique en y apportant plus d’innovations que bien
des industriels du secteur.
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nité du principe, tout logiciel libre conforme aux idées de la FSF
est soumis aux termes d’une licence, la GNU GPL (GNU General
Public License), qui impose les mêmes termes à tout logiciel dérivé.
Ainsi il n’est pas possible de détourner du logiciel libre pour créer
du logiciel non libre sans violer la licence.

8.6.2 Préhistoire
Avant d’examiner plus avant les tenants et les aboutissants de

ces principes et de ce modèle économique, il convient de signaler
que jusqu’en 1972 le logiciel, s’il n’était pas libre au sens de la GPL,
était pratiquement toujours disponible gratuitement et très souvent
sous forme de texte source, et ce parce que jusqu’alors la conscience
du coût et de la valeur propre du logiciel était dans les limbes. IBM,
qui avait fini par accaparer 90% du marché mondial de l’informa-
tique, distribuait systèmes d’exploitation et logiciels d’usage général
à titre de « fournitures annexes » avec les ordinateurs.

Peu après l’annonce de la gamme IBM 360 en 1964, RCA an-
nonça les ordinateurs Spectra 70 dont l’architecture était conçue
afin de pouvoir accueillir le logiciel développé pour les IBM 360, y
compris le système d’exploitation. Cette ambition ne se réalisa pas,
notamment parce que les ingénieurs de RCA n’avaient pu se retenir
d’ajouter à leur système des « améliorations » qui en détruisaient
la compatibilité, mais IBM avait perçu la menace et commença à
élaborer une parade juridique qui consistait à séparer la facturation
du logiciel de celle du matériel : ce fut la politique d’unbundling, an-
noncée en 1969, mais dont l’application à ce moment fut entamée
assez mollement.

Au début des années 1970, quelques industriels (notamment Te-
lex, Memorex et Calcomp) commencèrent à vouloir profiter de la
manne et pour cela vendre des matériels compatibles avec ceux
d’IBM, c’est à dire tels que les clients pourraient les acheter et les
utiliser en lieu et place des matériels IBM originaux. IBM riposta
à ce qu’il considérait comme une concurrence déloyale en cessant
de divulguer le code source des parties de système d’exploitation
qui permettaient la conception et le fonctionnement des systèmes
concurrents. Il en résulta des procès acharnés, et en 1972 un arrêt de
la Cour suprême des États-Unis, au nom de la législation anti-trust
créée pour limiter l’emprise de Rockfeller, statua dans le procès
Telex–IBM et imposa à IBM de facturer à part logiciel et maté-
riel. Ceci précipita l’entrée en vigueur de la politique d’unbundling.
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Les observateurs de l’époque déclarèrent que cela n’aurait aucun
effet, mais deux industries étaient nées : celle du matériel compa-
tible IBM, qui serait florissante une vingtaine d’années, et celle du
logiciel, dont Microsoft est le plus beau fleuron.

8.6.3 Précurseurs
Si l’Église chrétienne a reconnu à Jérémie, Isaïe, Daniel et Ézé-

chiel la qualité de précurseurs de la vraie foi et de la venue du Sau-
veur, Richard Stallman est plus intansigeant, mais n’en a pas moins
lui aussi des précurseurs. Ils se situent dans les limbes, à l’époque
où ARPANET engendrait TCP/IP, qui était bien évidemment du
logiciel, et qui était distribué aux membres du réseau, c’est à dire,
nous l’avons vu, potentiellement à toutes les universités et tous les
centres de recherche. Comme tout cela se passait à Berkeley, il en
résulta que le système de prédilection de TCP/IP et, partant, de
l’Internet fut Unix, et que traditionnellement les principaux logi-
ciels de réseau sous Unix furent distribués gratuitement, du moins
aux centres de recherche, sous les termes d’une licence dite « BSD »
qui garantissait les droits de propriété intellectuelle des « Régents
de l’Université de Californie ». Les éléments de base du protocole
TCP/IP proprement dit font partie du noyau Unix BSD, d’où ils
ont assez vite été adaptés aux noyaux des autres Unix, cependant
que les logiciels d’application qui en permettaient l’usage, tels que
Sendmail pour envoyer du courrier électronique, Ftp pour transfé-
rer des fichiers, Telnet pour se connecter à un système distant, etc.,
étaient distribués indépendamment. Plus tard Bind pour la gestion
du service de noms de domaines, INN pour le service de News et
beaucoup d’autres logiciels s’ajouteront à cette liste, toujours gra-
tuitement.

Par ailleurs, Unix devenait populaire dans le monde de la re-
cherche et les logiciels développés par des scientifiques étaient aussi
rendus disponibles dans des conditions analogues : TEX pour la com-
position typographique, Blast pour la comparaison de séquences
biologiques, Phylip pour l’analyse phylogénétique, pour ne citer que
trois exemples parmi une foule, sont disponibles selon les termes
de licences assez variées (ou d’absence de licence...), mais toujours
sans versement de redevances. Bref, le monde de la recherche fait
et utilise du logiciel libre depuis longtemps sans forcément le dire
ni même en avoir conscience.
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8.6.4 Économie du logiciel
Concurrence monopolistique

L’économie du logiciel, étudiée notamment avec brio par Michel
Volle dans son livre iconomie [133], exprime un paradoxe dont la
conscience ne s’est manifestée que récemment. Citons Michel Volle
dans la présentation de son livre : « Le “système technique contem-
porain” est fondé sur la synergie entre micro-électronique, informa-
tique et automatisation. On peut styliser sa fonction de production
en supposant qu’elle est “à coûts fixes” : le coût de production,
indépendant du volume produit, est payé dès l’investissement ini-
tial. Développons cette hypothèse : les usines étant des automates,
l’emploi réside dans la conception et la distribution. La distribu-
tion des revenus n’est pas reliée au salariat. Les entreprises diffé-
rencient leur production pour construire des niches de monopole.
Elles organisent leurs processus autour du système d’information.
Le commerce passe par des médiations empruntant la communica-
tion électronique.

L’investissement est risqué, la concurrence est mondiale et vio-
lente. On retrouve dans cette présentation stylisée des aspects ten-
danciels de notre économie. Elle éclaire la description des secteurs
de l’informatique, de l’audiovisuel, des réseaux (télécommunica-
tions, transport aérien, etc.), du commerce, ainsi que les aspects
stratégiques et tactiques des jeux de concurrence dans ces secteurs
et dans ceux qui les utilisent. On voit alors que cette économie
hautement efficace pourrait aller au désastre si elle était traitée
sur le mode du “laissez faire”, sans considérer les exigences de
l’éthique et de la cohésion sociale. » (texte disponible sur le site
http://www.volle.com selon les termes de la GNU Free Documenta-
tion License).

Michel Volle nous explique que ces rapports de production
créent une situation de concurrence monopolistique telle que l’entre-
prise qui parvient à dépasser ses concurrents en tire un tel avantage
qu’elle les anéantit : puisque les rendements sont croissants, le plus
gros est le plus rentable. Microsoft pour les systèmes d’exploitation,
Oracle pour les bases de données, Intel pour les processeurs, Google
pour les moteurs de recherche en sont des exemples.

La seule façon pour une entreprise de se développer à côté d’un
de ces géants est de créer un nouveau marché avec des produits
différents qui attirent une autre clientèle, ce qu’a su faire avec succès

http://www.volle.com
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Apple, en anéantissant au passage Nokia en quelques mois par le
lancement de l’iPhone en 2007.

Une autre issue est d’adopter un modèle économique complète-
ment différent, comme celui du logiciel libre dont GNU/Linux est
un bon exemple.

Économie du système d’exploitation

Voyons ce qu’il en est pour le système d’exploitation. Un sys-
tème d’exploitation commercial moderne tel que Windows com-
porte quelques 40 millions de lignes de programme. Estimer le
nombre de lignes de Linux est assez difficile parce qu’il faut ajouter
à la taille du noyau celle des multiples utilitaires et logiciels géné-
raux qui le complètent. La version 4.15 (architecture Intel x86-64)
utilisée pour rédiger le présent ouvrage, en comptant les pilotes
de périphériques et les modules, compte 20,3 millions de lignes,
auxquelles il faudrait en ajouter presqu’autant pour le système de
fenêtrage X, sans oublier les bibliothèques de commandes et de fonc-
tions diverses issues des projets GNU et BSD pour la plupart, mais
dont il conviendrait de retirer quelques dizaines de milliers de lignes
pour les parties redondantes liées par exemple à des architectures
différentes (Intel x86, ARM, PowerPC, etc.).

Le rendement moyen d’un développeur est hautement sujet à
controverses, mais si l’on compte les temps consacrés à la rédaction
de la documentation et à l’acquisition de connaissances, 50 lignes
par jour de travail semble un maximum, soit 10 000 par an et par
personne. Mais comme le signale Brooks dans son livre Le mythe de
l’homme-mois [23], une telle valeur est éminemment trompeuse. La
création d’un logiciel est une tâche très complexe, et la division du
travail la complique encore en multipliant les fonctions de direction,
de coordination et d’échanges d’information, qui peuvent aboutir
à ralentir le processus plus qu’à l’accélérer. Manuel Serrano en a
tiré les conséquences dans sa thèse d’habilitation [119] en plaidant
pour le « logiciel moyen » : les grands logiciels ne seraient devenus
encombrants, dans bien des cas, que par la prolifération incontrô-
lée d’un processus de développement devenu bureaucratique. Une
réflexion plus intense d’un groupe plus petit et plus conscient des
objectifs à atteindre permettrait d’obtenir un logiciel plus petit et
de meilleure qualité.

La création d’un logiciel important tel qu’un système d’exploi-
tation est une tâche colossale qui peut mobiliser des centaines de
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personnes pendant une décennie, le coût marginal du produit final
livré dans un grand magasin est pratiquement nul, le prix payé par
le client est essentiellement celui de la boîte en carton, des frais de
transport et de gestion et de l’effort commercial. Il en résulte, dans
l’industrie du logiciel, une tendance irréversible au monopole : dans
une industrie à coût marginal de production nul, dès que vous ven-
dez plus que les autres, vous êtes très vite beaucoup plus riche, avec
les conséquences qui en découlent. Dès lors qu’un marché prend
forme et s’organise, il émerge un fournisseur unique : c’est la si-
tuation de concurrence monopolistique que nous avons mentionnée
ci-dessus.

Comme nous l’avons signalé ci-dessus, l’espoir de diversité, dans
un tel contexte industriel, ne peut venir que de l’apparition de nou-
veaux segments de marchés, desservis par de nouvelles technologies,
rôle joué dans le passé par les mini-ordinateurs, puis les micro-
ordinateurs à base de microprocesseur, innovations technologiques
qui réduisaient de plusieurs ordres de grandeur les coûts de produc-
tion. Ou du recours à un autre modèle économique.

8.6.5 Modèle du logiciel libre
Le logiciel libre, face à cette situation, représente un potentiel

très dynamique, parce qu’il obéit à un modèle économique tout
autre. Microsoft ne peut utiliser contre lui aucune des armes clas-
siques de la concurrence industrielle, telles que la guerre des prix,
la publicité, les fournitures associées, l’effet de gamme, etc., parce
que le logiciel libre n’est sur aucun de ces terrains.

Les caractères économiques du logiciel libre ont été étudiés,
entre autres, par Marie Coris dans son travail de thèse de doctorat
à l’Université Montesquieu de Bordeaux IV (voir sa communication
au congrès JRES 2001 : [33]). Elle énumère d’abord les caractères
du logiciel en général :

— un bien d’information, aspect amplement développé ici dont
découle l’importance des économies d’échelle ;

— un bien en réseau : son utilité croît en raison du nombre de
ses utilisateurs ;

— un bien à cheval entre public et privé :
— le coût de production pratiquement engagé en totalité

dès le premier exemplaire, l’usage non destructif (il peut
être utilisé par un nombre infini d’utilisateurs), l’usage
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non exclusif (il est difficile d’empêcher quelqu’un d’autre
de l’utiliser) sont des caractéristiques d’un bien public,

— le recours à la protection du droit d’auteur ou du brevet
permet d’annuler les aspects « publics », par exemple en
limitant la reproductibilité, et de faire du logiciel un bien
privé.

L’alternative se situe entre le logiciel comme bien privé, idée des
entreprises telles que Microsoft, Oracle, etc., et le logiciel comme
bien public, idée du logiciel libre.

Volle, Coris et d’autres ont montré que le marché d’un bien
d’information ne peut prendre que deux formes :

— si les instances de ce bien sont suffisamment différenciées,
plusieurs fournisseurs peuvent coexister dans des niches du
marché ;

— dès qu’un fournisseur réussit à prendre sur ses concurrents
un avantage significatif en déniant leur différence, il obtient
une situation de monopole du fait des économies d’échelle
considérables procurées par le volume des ventes.

Le logiciel libre échappe à cette alternative parce qu’il se situe
hors de la logique marchande, et que la rétribution de ses auteurs
relève des domaines symbolique et moral. Michel Volle a fait re-
marquer qu’un auteur de logiciel libre aurait aussi un accès facilité
au capital–risque le jour où il voudrait créer une entreprise du fait
de la reconnaissance acquise dans le domaine non marchand.

La GNU GPL définit parfaitement les « quatre libertés » carac-
téristiques du logiciel libre : liberté d’utilisation, liberté de copie, li-
berté de modification et liberté de redistribution. Elle autorise donc
la modification et la redistribution, mais en imposant que le logiciel
reste sous GPL, et ce également dans le cas de l’incorporation d’un
logiciel libre à un nouveau logiciel : le caractère « libre » est héré-
ditaire et contagieux. Dans ce dispositif, le statut du code source
détermine la nature publique du bien, plus qu’il ne sert vraiment à
la maintenance par l’utilisateur. La publicité du code interdit l’ap-
propriation privée. Mais plonger dans les sources pour y introduire
des modifications est une entreprise à n’envisager qu’avec circons-
pection ; cela risque de coûter fort cher.

Reste à se poser une question : le logiciel libre, comme le logiciel
non libre, est écrit par des hommes et des femmes qui y consacrent
tout ou partie de leur vie professionnelle et qui ne vivent pas de l’air
du temps. Qui finance la production de logiciels libres, et comment,
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puisque, quoique ses apôtres s’en défendent, sa caractéristique prin-
cipale est bien qu’il est possible de l’utiliser sans bourse délier ?

Bertrand Meyer, dans un article assez polémique de critique
du libre [87], dresse une nomenclature des sources de financement
possibles, qui énerve les adeptes mais à laquelle il est difficile de
dénier toute véracité :

1. une donation : le développeur vit de sa fortune personnelle ou
développe pendant ses nuits et ses jours de congé ;

2. le financement public : le logiciel a été créé par un centre de
recherche, une université ou une autre entreprise publique ;

3. le financement privé : une entreprise décide de distribuer un
logiciel développé à ses frais selon le modèle libre ;

4. la subvention (publique ou privée) : le développeur crée un
logiciel en utilisant son temps de travail et les ressources de
son employeur, public ou privé, sans que celui-ci lui ait confié
cette tâche.

Le cas 4 est celui qui provoque parfois quelque agacement, et
on ne peut exclure qu’il soit assez répandu. Cela dit, un examen de
ce cas informé par les tendances les plus récentes de la sociologie
du travail montre que cette situation n’est pas forcément scanda-
leuse, et que l’initiative prise par le développeur peut comporter des
avantages pour son employeur même s’il n’en avait pas initialement
conscience. La création d’Unix en est le plus bel exemple, et si l’on
regarde en arrière, on peut se dire qu’AT&T en aurait sans doute
tiré encore plus d’avantages en en faisant un logiciel libre ; Unix ne
lui a pas vraiment rapporté beaucoup d’argent, et sa facturation
aux entreprises a considérablement restreint sa diffusion. Le succès
actuel de Linux apporte ex post des arguments à l’appui de cette
hypothèse. Toutefois, Bertrand Meyer a raison d’écrire que sans le
couple Intel–Microsoft il n’y aurait jamais eu de PC à 300 Euros,
et partant jamais de succès pour Linux.

Un exemple typique et très instructif du cas 3 fut celui du lo-
giciel Ghostscript, produit par la société Aladdin Enterprises (au-
jourd’hui disparue), qui est un interpréteur du langage PostScript.
PostScript est un langage de description de pages utilisé comme for-
mat de sortie par de nombreux logiciels et comme format d’entrée
par beaucoup d’imprimantes. Ghostscript est utile pour afficher à
l’écran le contenu d’un fichier PostScript, et pour l’imprimer sur
une imprimante dépourvue d’interpréteur PostScript incorporé, ce
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qui est le cas notamment de beaucoup de petites imprimantes à
jet d’encre. Ce logiciel a deux groupes bien distincts d’utilisateurs :
des millions de propriétaires de petites imprimantes bon marché
qui veulent afficher et imprimer du PostScript, et une dizaine d’in-
dustriels fabricants d’imprimantes, qui incorporent Ghostscript par
paquets de cent mille exemplaires à leurs productions.

Dans sa grande sagesse, la société Aladdin Enterprises avait dé-
cidé de ne pas se lancer dans la commercialisation à grande échelle
d’un logiciel qui vaudrait quelques dizaines d’Euros, et de le dis-
tribuer aux particuliers sous les termes d’une licence dite Aladdin
Ghostscript Public License, qui protégeait la propriété intellectuelle
d’Aladdin et permettait un usage gratuit. Depuis 2000, Ghostscript
est un logiciel libre disponible sous les termes de la GNU GPL.
Aladdin Enterprises tirait plutôt ses revenus de la clientèle des fa-
bricants d’imprimantes.

Le cas 2 est sans doute le plus fréquent. La justification initiale
de ce modèle me semble remonter au principe constant de l’admi-
nistration américaine : ce qui a été payé une fois par le contribuable
ne doit pas l’être une seconde fois. Les logiciels dont le dévelop-
pement a été financé par des contrats de recherche de la DARPA
doivent être mis gratuitement à la disposition du public, au même
titre que les photos de l’espace prises par la NASA.

Ce principe ne semble pas scandaleux : ce qui a été financé par
l’argent public 10 (au sens large) revient au public. Les résultats
de la recherche publique sont disponibles publiquement. Il s’agit
d’un système de redistribution : tous les contribuables financent les
logiciels produits de cette façon, et les bénéficiaires en sont les uti-

10 Ramenons ici à de justes proportions la vision que l’on a souvent en France du
système universitaire américain, dont les universités seraient autant d’entre-
prises privées gérées comme des sociétés commerciales et dont les étudiants
seraient purement et simplement des clients. Cette vision est simpliste : ainsi
l’Université de Californie, organisée autour de huit campus répartis sur le
territoire de l’État, reçoit 80% de ses financements de l’État de Californie, de
l’État fédéral, des municipalités et d’agences fédérales. Les étudiants califor-
niens y sont admis gratuitement sur des critères de dossier scolaire. Du moins
en était-il ainsi encore récemment, les dernières nouvelles laissent craindre
une dégradation de ce système généreux. D’autres universités ont sans doute
des modes de fonctionnement plus éloignés du service public français, bref,
les situations sont variées et il n’est pas certain que les formations universi-
taires soient plus réservées aux catégories privilégiées là-bas qu’ici, même si
les barrières ne sont pas disposées de la même façon.
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lisateurs. Il est légitime de s’interroger sur l’équité de ce processus
de répartition, mais il en est sans doute de pires.

Qui pourrait s’estimer lésé ? Essentiellement les entreprises dont
la prospérité repose sur le logiciel commercial, et qui pourraient ar-
guer d’une concurrence déloyale, puisque le plus souvent alimentée
par des financements publics. Curieusement, on observe peu de pro-
testations de cette nature, et encore moins de procès.

Il convient aussi de remarquer que le modèle du logiciel libre,
s’il n’apporte apparemment que des avantages à l’utilisateur, peut
comporter des inconvénients pour l’auteur, qui s’interdit en fait
tout contrôle exclusif sur la divulgation de son travail. Certes, les
clauses de la GNU GPL permettent la commercialisation de lo-
giciel libre, et il est parfaitement possible de recourir au système
de la double licence, par exemple GNU GPL pour le monde aca-
démique et licence commerciale pour le monde industriel. Mais il
est clair qu’un logiciel novateur dont l’auteur peut espérer des re-
venus importants sera mal protégé des contrefaçons si son code
source est divulgué. En fait, dans le monde académique la pression
idéologique pour la GNU GPL est très forte, et les auteurs de logi-
ciels qui souhaitent vivre des fruits de leur activité de développeur
plutôt que d’un emploi universitaire (ou qui, faute d’un tel emploi,
n’ont pas le choix) sont assez marginalisés par ce système. Le carac-
tère contagieux et contraignant de la GNU GPL est très pénalisant
pour l’auteur qui ne souhaiterait pas vivre dans l’abnégation (c’est
le terme exact : le logiciel qu’il a écrit ne lui appartient plus), ou
qui, faute d’avoir obtenu un poste dans un organisme public, ne le
pourrait pas. Il y a des exemples d’auteurs qui pour avoir refusé les
servitudes de la GNU GPL se sont vu mettre au ban de la commu-
nauté, leurs travaux passés sous silence et leurs logiciels exclus des
serveurs publics.

En fait, la réalité usuelle du développeur de logiciel libre est
qu’il gagne sa vie autrement, et que la rétribution qu’il attend pour
son œuvre est la reconnaissance de ses pairs. Quiconque bénéficie
du logiciel libre ressent le désir d’y contribuer et ainsi d’adhérer à
une communauté perçue comme éthique. Il est souhaitable que la
GNU GPL ne reste pas hégémonique et que d’autres licences aux
termes moins idéologiques et plus équilibrés apparaissent dans le
monde du logiciel libre.
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8.6.6 Une autre façon de faire du logiciel
Le modèle du logiciel libre n’est pas sans influence sur la nature

même du logiciel produit. En effet, dans ce contexte, un auteur peut
facilement utiliser d’autres logiciels s’ils sont libres, que ce soit pour
recourir à des bibliothèques de fonctions générales ou pour s’inspirer
d’un logiciel aux fonctions analogues mais dans un environnement
différent.

Des systèmes de développement coopératif se mettent en place
par le réseau, qui seraient impensables pour du logiciel non-libre : les
programmes sous forme source sont accessibles sur un site public, et
chacun peut soumettre sa contribution. L’archétype de ce mode de
développement est celui du noyau Linux proprement dit, coordonné
par Linus Torvalds personnellement.

Pour qu’un tel procédé donne des résultats utilisables, il faut
que le logiciel présente une architecture qui s’y prête, notamment
une grande modularité, afin que chaque contributeur puisse tra-
vailler relativement indépendamment sur telle ou telle partie. Par
exemple, dans le noyau Linux, tout ce qui permet le fonctionne-
ment de machines multi-processeurs et la préemption des processus
en mode noyau (voir section 3.12.5) demande une synchronisation
beaucoup plus fine des fils d’exécution : les adaptations nécessaires
ont été réalisées par Robert Love, ce qui a été possible parce qu’il
n’était pas trop difficile d’isoler les parties du code concernées. À
l’inverse, lorsque Netscape a voulu donner un statut Open Source à
une partie du code de son navigateur connue sous le nom Mozilla,
l’opération a été rendue difficile parce que le code initial n’avait pas
été réalisé selon un plan suffisamment modulaire.

Finalement, la réutilisation de composants logiciels, dont plu-
sieurs industriels parlent beaucoup depuis des années sans grand
résultat, sera sans doute réalisée plutôt par les adeptes de l’Open
Source. En effet, l’achat d’un tel composant est un investissement
problématique, tandis que le récupérer sur le réseau, l’essayer, le
jeter s’il ne convient pas, l’adopter s’il semble prometteur, c’est la
démarche quotidienne du développeur libre. On pourra lire à ce su-
jet l’article de Josh Lerner et Jean Tirole, The Simple Economics
of Open Source [76].

L’analyse détaillée des conséquences d’un tel mode de construc-
tion de logiciel reste à faire, mais en tout cas il ne fait aucun doute
que le résultat sera très différent. Rappelons les étapes classiques
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de la construction d’un système informatique pour un client selon
le mode projet :

— expression des besoins ;
— cadrage, opportunité, faisabilité ;
— spécification ;
— réalisation ;
— recette...
Oublions tout cela dans le monde du libre. Le logiciel commence

à prendre forme autour d’un noyau, noyau de code et noyau humain,
généralement une seule personne ou un tout petit groupe. L’impul-
sion initiale procède le plus souvent du désir personnel des auteurs
de disposer du logiciel en question, soit qu’il n’existe pas, soit que
les logiciels existants ne leur conviennent pas, que ce soit à cause
de leur prix ou de leur environnement d’exécution. Puis d’autres
contributions viennent s’ajouter, presque par accrétion. Un coor-
donnateur émerge, souvent l’auteur initial, il assure la cohérence
de l’ensemble. Quand des divergences de vue surgissent, il peut y
avoir une scission : ainsi deux versions sont disponibles pour Emacs,
Gnu Emacs et Xemacs, toutes deux libres.

Le catalogue du logiciel libre est assez vaste. Tout d’abord le
logiciel libre avant la lettre :

— TEX, LATEX, respectivement de Donald Knuth et de Leslie
Lamport, avec lesquels est réalisé le présent document ;

— les logiciels réseau :
— Sendmail, pour envoyer du courrier ;
— Bind, pour résoudre les noms de domaine,
— beaucoup d’autres, ce sont eux qui « font marcher » l’In-

ternet ;
— X Window System, créé par un consortium qui unissait IBM,

DEC et le MIT ;
— des quantités de programmes scientifiques : l’essentiel de la

biologie moléculaire se fait avec du logiciel libre.
Et pour le logiciel libre canonique, de stricte obédience :
— Gnu Emacs, un éditeur de texte, GCC, un compilateur C,

The Gimp, un concurrent libre de Photoshop, GNAT, un
environnement de programmation ADA ;

— Linux, FreeBSD, OpenBSD, NetBSD, des systèmes
d’exploita-tion Unix ;

— PostgreSQL, MariaDB et MySQL, des systèmes de gestion
de bases de données relationnelles ;

— Apache, un serveur Web.
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Chacun dans son domaine, ces logiciels sont de toute première
qualité, et il n’y a pas à hésiter : ce sont eux qu’il faut utiliser ! Il
manque bien sûr des choses, comme un logiciel OCR comparable à
Omnipage de Caere...

8.6.7 Linux
Linux est indubitablement un système emblématique du logiciel

libre. S’il y a d’autres systèmes d’exploitation libres, y compris dans
la famille Unix, et si les logiciels libres ne sont pas tous destinés à
Unix, l’association avec Linux est inévitable.

Le début de ce chapitre montre la filiation entre le mouve-
ment autour d’Unix et le développement du logiciel libre, mais
le paradoxe était qu’Unix lui-même n’était pas libre, AT&T en
détenait les droits. Pourtant la communauté Unix était très at-
tachée à l’idée de l’accès au code source du système, puisque le
développement de nouveaux logiciels, certains très proches du sys-
tème, ne pouvait être entrepris qu’avec un tel accès. En outre les
droits d’AT&T semblaient contestables, parce qu’Unix avait re-
cueilli beaucoup de contributions extérieures souvent non rémuné-
rées. Plusieurs moyens ont été envisagés pour briser ou contourner
ce paradoxe.

Le premier moyen consistait à obtenir d’AT&T une licence
source. Si pour des chercheurs ou des universitaires c’était théo-
riquement possible, pratiquement des obstacles surgissaient. Si l’on
était loin des États-Unis et que l’on n’avait pas de relations dans ce
milieu, nouer les contacts nécessaires pouvait demander des mois.
Une fois la licence source obtenue, il fallait obtenir du fournisseur
de son ordinateur les sources de la version de système précise ins-
tallée sur la machine, ce à quoi il ne se prêtait pas toujours avec
bonne volonté. Bref, le seul moyen de pouvoir accéder réellement
aux sources d’un système opérationnel était d’appartenir à un des
groupes en vue du monde Unix. Rappelons qu’au début des années
1980 une machine capable de « tourner » Unix et le réseau coû-
tait au minimum l’équivalent de 100 000 Euros et que l’Internet
n’atteignait pas l’Europe.

Ces difficultés étaient particulièrement ressenties par les ensei-
gnants qui voulaient initier leurs étudiants à Unix, ce qui était bien
sûr impossible sans accès au code source. Ils ont très tôt imaginé
des moyens de contourner les droits d’AT&T. Le précurseur quasi
légendaire de cette démarche fut un professeur australien, John



Aux sources du logiciel libre 305

Lions, dont le livre de 1977 A Commentary on the Unix System,
V6 [80] comportait le code du noyau. AT&T n’avait autorisé qu’un
tirage limité, mais comme en URSS du temps de Brejnev apparut
une véritable activité clandestine de Samizdat. Ce livre fut réédité
en 1996, et il mérite toujours d’être lu. John Lions aura vu la pu-
blication légale de son œuvre avant sa mort en décembre 1998.

Andrew Tanenbaum, professeur à l’Université Libre d’Amster-
dam (Vrije Universiteit Amsterdam), rencontra le même problème.
Pour les besoins de son enseignement il créa de toutes pièces un
système miniature inspiré d’Unix, adapté aux micro-ordinateurs à
processeur Intel et baptisé Minix. Le cours donna naissance à un
livre [126] dont les premières versions (1987) comportaient en an-
nexe le code de Minix. Il était également possible d’acheter les dis-
quettes pour installer Minix sur son ordinateur, mais ce n’était ni
très bon marché ni très commode.

Pendant ce temps le groupe BSD travaillait à expurger son code
de toute instruction rédigée par AT&T, de façon à l’affranchir de
tout droit restrictif. Le résultat fut 4.3BSD Net1 en 1989, puis
4.3BSD Net2 en 1991. L’objectif était de produire 4.4BSD-Lite en
1993, mais USL (Unix System Laboratories, une branche d’AT&T
qui était à l’époque propriétaire des droits Unix) attaqua ce projet
en justice, ce qui en différa la réalisation d’un an. Du groupe BSD
émanèrent aussi un système Unix pour processeurs Intel en 1992,
386BSD, et une société destinée à le commercialiser, BSD Inc. Mais
tous ces efforts furent retardés par des questions juridiques. Ils dé-
bouchèrent, sensiblement plus tard, sur les Unix libres FreeBSD,
OpenBSD et NetBSD.

Rappelons que depuis 1983 le projet GNU visait lui aussi à pro-
duire un système similaire à Unix mais libre de droits et disponible
sous forme source. Au début des années 1990 ce groupe avait réa-
lisé un certain nombre de logiciels libres utilisables sur les divers
Unix du marché, notamment des utilitaires, mais toujours pas de
noyau. En fait ce n’est qu’en 2000 que le système Hurd 11 destiné
à remplacer le noyau Unix et basé sur le micro-noyau Mach créé
à l’Université Carnegie-Mellon commença à ressembler à un vrai
système.

11 Hurd est fondé sur un micro-noyau, ce n’est donc pas un noyau. Voir chapitre
10.
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Le salut allait venir d’ailleurs. En 1991 un étudiant de l’Uni-
versité d’Helsinki, Linus Torvalds, achète un ordinateur doté d’un
processeur Intel 386 et cherche un moyen d’explorer son fonction-
nement. Minix lui semble une voie prometteuse, dans laquelle il
s’engage, mais il y rencontre quelques obstacles et commence à ré-
écrire certaines parties du noyau. En août 1991 Linux est né, en
septembre la version 0.01 est publiée sur le réseau. Elle ne peut
fonctionner que sous Minix. La version 0.02 publiée le 5 octobre
1991 permet l’usage du shell bash et du compilateur C gcc, deux
logiciels GNU. La première version réputée stable sera la 1.0 de
mars 1994.

Pour résumer la nature de Linux, nous pourrions dire que c’est
un noyau, issu à l’origine de celui de Minix, et dont le développe-
ment est toujours assuré sous la supervision personnelle de Linus
Torvalds, entouré des outils GNU, le tout sous licence GPL. Ce que
Linus Torvalds a fait, d’autres auraient peut-être pu le faire eux-
mêmes, et ils regrettent sans doute d’en avoir laissé l’occasion, à un
Européen de surcroît, mais l’histoire est ainsi.

Linux est au départ plutôt un Unix System V, mais doté de
toutes les extensions BSD souhaitables, ainsi que des dispositifs né-
cessaires à la conformité POSIX 12. Sa principale originalité tient
sans doute à son processus de développement : alors que tous les
autres systèmes d’exploitation cités dans ce chapitre ont été dé-
veloppés par des équipes organisées, le développement du noyau
Linux s’est fait depuis le début par « appel au peuple » sur l’Inter-
net. Quiconque s’en sent la vocation peut participer aux forums,
lire le code et proposer ses modifications (appelées patches). Elles
seront examinées par la communauté, et après ce débat Linus Tor-
valds tranchera et décidera de l’incorporation éventuelle au noyau
officiel. Il est difficile d’estimer les effectifs d’une telle communauté
informelle, mais le nombre de contributeurs actifs au noyau Linux
est sans doute inférieur à 200 (nombre de développeurs recensés

12 POSIX (Portable Operating System Interface) est une norme de l’IEEE qui
définit une API (Application Program Interface) et une interface de com-
mande pour les systèmes d’exploitation, assez inspirés d’Unix. La première
version de POSIX a été rédigée en 1986 par un groupe de travail auquel
appartenait notamment Richard M. Stallman. Cet effort de normalisation
fut au départ assez mal reçu par une communauté Unix plutôt libertaire :
je me rappelle une conférence Usenix à la fin des années 1980 où certains
participants arboraient un badge « Aspirin, Condom, POSIX ». Mais il est
certain que POSIX fut salutaire.
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pour la version 2.0). Le succès de Linux résulte sans doute en par-
tie de facteurs impondérables : pourquoi l’appel initial de Torvalds
a-t-il séduit d’emblée ? La réponse à cette question est sûrement
complexe, mais en tout cas le succès est incontestable. Ce qui est
sûr, c’est que l’appel à contribution d’août 1991 répondait à une
attente et à une frustration largement répandues.

Comme nous pouvons nous y attendre, Linux connaît aussi la di-
vision en chapelles. Ici elles s’appellent « distributions ». Au début,
la diffusion des éléments de Linux s’effectuait par le réseau, mais
assez vite cela devint volumineux et compliqué. Il fallait transférer
le noyau lui-même (en code source), ainsi que les logiciels (surtout
GNU) sans lequel il aurait été inutilisable, en veillant à la syn-
chronisation des versions compatibles. Au bout de quelques années
apparurent des éditeurs qui distribuaient pour un prix modique des
CD-ROMs comportant tout ce qu’il fallait pour démarrer.

Par exemple en 1996 on pouvait acheter pour l’équivalent de
moins de 30 Euros (somme compatible avec la notion de logiciel
libre, puisqu’elle ne rémunérait que la copie, l’emballage et la distri-
bution, pas le logiciel lui-même) le jeu de CD Infomagic, qui com-
portait notamment la distribution Slackware. La Slackware était
une distribution assez ascétique : les différents logiciels étaient sim-
plement fournis sous forme d’archives compressées qu’il fallait com-
piler, en bénéficiant quand même du logiciel de gestion de configu-
ration make.

D’autres distributions proposent des paquetages : il s’agit de
programmes tout compilés. Rassurez-vous, les principes du logiciel
libre sont respectés, le paquetage source est fourni à côté. Les distri-
butions RedHat et Debian ont chacune leur format de paquetage,
leur logiciel d’installation qui en outre contrôle les dépendances
entre paquetages, l’installation et la mise à jour par le réseau, etc.
Il faut bien reconnaître que c’est assez pratique. Mais pour le dé-
butant qui se lance dans l’installation de Linux il est néanmoins
conseillé d’avoir à proximité un ami qui est déjà passé par là !
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Introduction
La recherche de performances a inspiré des tentatives pour

contourner la loi d’airain de l’architecture de von Neumann : une
seule instruction à la fois. Ces tentatives se classent en deux ca-
tégories : radicales et pragmatiques. Le présent chapitre en fait un
bref tour d’horizon. Les architectures qui remettent fortement en
cause le principe de von Neumann n’existent aujourd’hui que dans
quelques laboratoires (même si elles sont sans doute promises à
un avenir meilleur et si certaines d’entre elles ont un passé respec-
table), et celles qui sont des extensions pratiques de ce principe ne
remettent pas en cause la sémantique du modèle de calcul, même
si elles en compliquent considérablement la mise en œuvre tech-
nique pour le bénéfice d’une amélioration non moins considérable
des performances.

9.1 Architectures révolutionnaires
Les tentatives radicales visent à créer de nouveaux modèles de

calcul en imaginant des ordinateurs capables d’exécuter un grand
nombre d’instructions simultanément. Ces modèles révolutionnaires
se classent selon diverses catégories :

9.1.1 SIMD (Single Instruction Multiple Data)
Comme le nom le suggère, il s’agit d’ordinateurs capables d’ap-

pliquer à un moment donné la même opération à un ensemble de
données, ce qui postule une certaine similarité de celles-ci. Ce pos-
tulat est rarement satisfait dans le cas général, mais il s’applique
bien à un cas particulier important, celui du calcul vectoriel ou ma-
triciel, qui a de nombreuses applications pratiques en météorologie,
en aérodynamique, en calcul de structures, en océanographie, en
sismologie, bref dans tous les domaines pour lesquels la physique
ne donne pas de solution analytique simple mais où un modèle heu-
ristique étalonné sur des données recueillies pour des problèmes à
solution connue et appliqué à un ensemble de données empiriques
aussi vaste que possible permet d’atteindre une solution approchée
satisfaisante. Le modèle SIMD a connu sous le nom d’ordinateur
vectoriel un certain succès, qui se perpétue sous d’autres formes
(proceseur graphique, dit aussi GPU, par exemple).
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En réalité un processeur vectoriel ne dispose que d’un seule unité
de contrôle, qui pilote de multiples unités d’exécution. La réalisation
d’un tel ordinateur pose des problèmes théoriques raisonnablement
solubles ; il en va de même pour la programmation.

Les super-ordinateurs Cray, Fujitsu, NEC, les mini-super
Convex, les processeurs spécialisés Floating Point Systems ont
connu de réels succès jusque dans les années 1980 et 1990 en em-
ployant à des degrés divers la technologie vectorielle.

Si la baisse de prix des processeurs ordinaires les a peu à peu
écartées, ces architectures pourraient revenir en scène lorsque les
progrès de la technologie classique rencontreront des obstacles sé-
rieux, et s’appliquer assez bien à tous les problèmes de traitement
et de création d’images. D’ailleurs le développement extraordinaire
des jeux vidéo, qui sont aujourd’hui (en 2018, comme en 2002 pour
la première édition de ce texte) l’un des aiguillons les plus aigui-
sés de la recherche micro-électronique, a nécessité la conception
de processeurs graphiques époustouflants qui recyclent pas mal de
technologie vectorielle.

9.1.2 Architectures cellulaires et systoliques
Le modèle SIMD poussé à son extrême donne le modèle cel-

lulaire, conçu pour exploiter un parallélisme de données massif :
on a toujours un processeur par donnée, les processeurs sont très
simples mais ils se comptent par dizaines de milliers. Il y eut sur-
tout des prototypes de laboratoire, excepté le premier modèle de la
Connection Machine de l’entreprise modestement nommée Thin-
king Machines Corporation. Cet ordinateur, doté de 65 536 proces-
seurs, chacun flanqué d’une mémoire locale de 65 536 bits, avait été
conçu par Daniel Hillis, un étudiant en intelligence artificielle au
MIT et réalisé grâce à une commande du DoD (ministère de la Dé-
fense américain). Il s’en vendit une vingtaine d’exemplaires (dont
deux en France) pour un coût unitaire équivalent à une dizaine de
millions de dollars.

Une variante du modèle cellulaire est l’ordinateur systolique, qui
exploite en outre un parallélisme de flux de données : un vecteur de
données passe par des processeurs successifs qui correspondent à
des étapes successives de calcul et qui effectuent chacun un type
d’opération.

Il convient également de mentionner la conception et la réali-
sation de processeurs systoliques spécialisés pour certaines appli-
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cations, notamment la comparaison de séquences biologiques. La
plupart de ces processeurs, par exemple le réseau systolique linéaire
SAMBA de 256 processeurs pour la comparaison de séquences bio-
logiques développé par Dominique Lavenier à l’IRISA de Rennes,
implémentent l’algorithme classique de Smith et Waterman (un al-
gorithme dit de « programmation dynamique »).

La comparaison de séquences biologiques est une comparaison
inexacte : il s’agit de savoir si deux chaînes de caractères repré-
sentant deux séquences d’ADN (l’alphabet est ATGC) ou deux sé-
quences de protéines (l’alphabet est alors plus vaste pour représen-
ter les vingt acides aminés et quelques autres informations) sont
suffisamment semblables, au prix de quelques disparités de carac-
tères (de possibles mutations), de quelques décalages (insertions ou
délétions).

Le système est constitué de plusieurs processeurs capables sur-
tout de comparer deux caractères entre eux. Les processeurs sont
disposés en série ; s’il y en a cent on peut placer dans la mémoire lo-
cale de chacun d’eux un caractère d’une séquence de cent caractères
que l’on veut étudier en la comparant à une collection de séquences
connues par ailleurs. On fait défiler les séquences de la collection
(généralement nommée banque) dans les processeurs qui détiennent
la séquence étudiée (la cible). Il n’est pas possible d’exposer ici le
détail de l’algorithme, mais cette architecture est très bien adap-
tée à cet algorithme. Malheureusement elle est limitée à un seul
algorithme.

9.1.3 MIMD (Multiple Instructions Multiple Data)
Les machines MIMD sont des ordinateurs capables d’exécuter

simultanément de nombreuses instructions quelconques appliquées
à des données également quelconques. En fait il y a de multiples
processeurs qui se partagent une mémoire unique, parfois ils ont
chacun en plus une mémoire locale, quelquefois ils n’ont qu’une
mémoire locale. L’interconnexion de tous ces processeurs, leur syn-
chronisation et le maintien de la cohérence de la mémoire partagée
posent des problèmes absolument passionnants de conception du
matériel et du système d’exploitation : une fois ceux-ci résolus il
reste à programmer tout ça, et c’est là qu’achoppe l’ambition de
ces tentatives. La complexité de la programmation est telle que le
temps qu’elle absorbe suffit aux processeurs ordinaires pour com-
bler l’écart de performance que l’architecture MIMD était censée
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creuser. Ces architectures connaîtront une nouvelle faveur lorsque
la courbe inexorable du progrès des processeurs de von Neumann
s’infléchira.

Parmi les réalisations MIMD les plus achevées on retiendra
les dernières Connection Machines de Thinking Machines
Corporation, entreprise disparue durant les cruelles années 1990.
Citons aussi les Transputers de la société britannique Inmos,
destinés à former les éléments de base d’architectures plus
complexes, inspirés des travaux de C.A.R. Hoare 1 sur les processus
séquentiels communicants. Le Transputer a connu un certain
succès, notamment dans le domaine industriel.

Ce rapide tour d’horizon des architectures non von Neumann
illustre leur échec général dû à la difficulté de leur programma-
tion. À leur apparition elles ont souvent énormément séduit, mais
la nécessité de recourir à des méthodes et à des langages de pro-
grammation peu répandus et maîtrisés par peu d’ingénieurs a vite
découragé industriels et clients. D’où le succès, en revanche, de
contournements du principe de von Neumann par des voies moins
radicales, qui recherchaient le même résultat tout en conservant la
sémantique classique et que nous allons examiner maintenant.

1 Le Britannique C. Antony R. Hoare est à l’origine de quelques contributions
de premier plan. Des études universitaires de tonalité plutôt littéraire lui ont
donné l’occasion de partir en stage en 1960 dans le laboratoire de Kolmo-
gorov à l’Université de Moscou pour travailler sur un projet de traduction
automatique. Pour réaliser un dictionnaire électronique nécessaire à ce projet
(par ailleurs vite abandonné) il inventa l’algorithme de tri « Quicksort » que
tout étudiant en informatique se doit d’avoir étudié en détail et programmé.
Ce stage lui avait donné le goût de la programmation, mais, comme il le
raconte lui-même avec humour, il eut la chance que sa formation initiale
lui fermât les portes du UK National Physical Laboratory, et il entra dans
l’industrie. C’est là qu’il eut l’occasion de participer au développement de
systèmes d’exploitation, domaine pour lequel il élabora la méthode des mo-
niteurs de Hoare afin de contrôler les accès concurrents et exclusifs à des
ressources partagées, méthode reprise pour les threads du langage Java, et la
théorie des processus séquentiels communicants, encore aujourd’hui le seul
modèle complet et cohérent qui excède réellement le modèle de von Neu-
mann.



Architectures réformistes 313

9.2 Architectures réformistes
Parmi les différentes réformes apportées à l’architecture de von

Neumann pour en améliorer les performances tout en conservant un
comportement extérieur apparent identique, la plus importante par
ses conséquences est peut-être la substitution à la mémoire centrale
unique d’une hiérarchie de mémoires de temps d’accès décroissants,
depuis le cache de niveau 1 incorporé au processeur jusqu’à la mé-
moire auxiliaire de pages sur disque : mais cette notion de hiérarchie
de mémoire dépasse le cadre du présent chapitre et elle est abordée
dans plusieurs chapitres du corps de cet ouvrage. Nous examinerons
ici les architectures en « pipe-line » et super-scalaires. Mais aupara-
vant nous devons donner un peu plus de détails sur le déroulement
des instructions que nous ne l’avions fait à la sous-section 2.4.1.

Séquence d’exécution d’une instruction
Dans l’exposé du principe de l’ordinateur à la sous-section 2.4.1

nous avons considéré chaque instruction machine comme une opé-
ration indivisible dans le temps, atomique, et il en est bien ainsi
selon von Neumann. En fait la plupart des instructions sont ef-
fectuées selon une séquence temporelle identique et régulière dont
nous allons exposer un exemple.

L’exécution des instructions successives de notre architecture a
lieu selon la séquence suivante. Notons que cet exemple, pour une
raison que nous allons voir, postule des instructions à format fixe.

1. Étape de lecture FETCH : l’unité de contrôle va chercher en
mémoire la prochaine instruction à exécuter. Comment sait-
on où aller la chercher ? L’unité de contrôle maintient cette
information dans un compteur de programme (PC) qui à
chaque instant contient l’adresse en mémoire de l’instruction
suivante. Dans le cas le plus simple (pas de débranchement)
c’est l’adresse du mot qui suit l’instruction en cours. Dans le
cas d’un débranchement : eh bien l’instruction de débranche-
ment consiste précisément à placer dans le PC l’adresse de
l’instruction à laquelle le programme doit se poursuivre (doit
« sauter » : les débranchements sont aussi appelés sauts ; on
distingue les branchements conditionnels et les sauts simples,
inconditionnels).
Le PC peut résider dans un registre de l’unité centrale. Dans
notre exemple simple il serait possible de lui réserver R qui
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n’est pas utilisé à autre chose. Dans beaucoup de processeurs
le PC est une partie du PSW (Program Status Word) qui
conserve différents indicateurs fondamentaux du processeur.

2. Étape de décodage DEC : l’unité de contrôle analyse le code
opération (5 premiers bits dans notre exemple de la section
2.4.1) et détermine ainsi le circuit logique qui correspond à
l’instruction désirée. Simultanément au décodage, l’unité de
contrôle effectue la lecture des registres impliqués dans l’ins-
truction. Cette simultanéité impose des instructions à format
fixe, où le nombre et l’emplacement des bits qui désignent les
registres soient toujours les mêmes. Le contenu des registres
est recopié dans des registres de travail temporaires.

3. Étape d’exécution EXEC : l’instruction déterminée à l’étape
de décodage est exécutée ; s’il doit y avoir un accès mémoire
l’adresse effective est calculée ; s’il s’agit d’un branchement
conditionnel le contenu du registre lu à l’étape précédente
permet de déterminer si le branchement doit être « pris » et
si oui l’adresse de branchement est calculée.

4. Étape d’accès mémoire MEM : cette étape a lieu pour les
opérations de chargement et de rangement en mémoire et
pour les branchements. Les chargement ou rangements ont
lieu, ou la valeur convenable est placée dans le PC. Ces opé-
rations ont lieu dans le cache, ce qui explique que cette étape
ait une durée comparable aux autres.

5. Étape d’écriture du résultat RES dans les registres affec-
tés.

9.3 Le pipe-line
9.3.1 Principe du pipe-line

Pour l’exemple de processeur que nous venons de donner,
l’exécution d’une instruction se décompose en cinq étapes plus
élémentaires. À part l’exécution proprement dite (étape EXEC),
ces étapes sont les mêmes quelle que soit l’instruction particulière
qui doit être exécutée. L’idée est venue de confier chaque étape à
une unité de circuits logiques spécifique : unité de lecture, unité
de décodage, unité d’exécution, unité d’accès mémoire, unité de
livraison du résultat. Ainsi le processeur peut commencer à traiter
une instruction avant que la précédente soit terminée, en utilisant
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les unités libérées par la terminaison des premières étapes. Soient
i1, i2, i3, i4, i5 cinq instructions consécutives, elles seront traitées
ainsi :

i1 FETCH DEC EXEC MEM RES
i2 FETCH DEC EXEC MEM RES
i3 FETCH DEC EXEC MEM RES
i4 FETCH DEC EXEC MEM RES
i5 FETCH DEC EXEC MEM RES

Cette structure s’appelle un pipe-line, parce qu’elle évoque un
tuyau dans lequel les instructions s’engouffrent les unes derrière les
autres sans attendre que la précédente soit sortie. Nos instructions
sont découpées en cinq étapes, ce qui fait que notre pipe-line à un
moment donné contient cinq instructions en cours d’exécution : on
dit que c’est un pipe-line à cinq étages. Certains processeurs ont
des pipe-lines avec sept ou huit étages, voire plus : le Pentium III a
douze étages de pipe-line, le Pentium IV en a vingt.

9.3.2 Histoire et avenir du pipe-line
L’idée du pipe-line est apparue assez tôt ; l’IBM 7030 Stretch

(1960), une machine à mots de 64 bits, est considéré comme la pre-
mière machine à pipe-line. Le Stretch succédait au 704 et devait
être 100 fois plus puissant. Il n’en a été construit que seize exem-
plaires 2 mais cette machine a représenté une étape importante avec
beaucoup d’innovations.

Le Control Data 6600, une autre machine novatrice apparue en
1964, considérée comme le premier super-ordinateur et dont l’archi-
tecte principal était Seymour Cray, comportait aussi une structure
de pipe-line, et ses concepteurs avaient compris que pour qu’elle
fonctionne efficacement il fallait des instructions simples, de lon-
gueur fixe, toutes à peu près de la même durée d’exécution, si pos-
sible en un cycle. Seymour Cray poussera ces principes à l’extrême
dans les super-ordinateurs vectoriels qu’il construira sous son nom
pour Cray Research, et qui furent les plus puissants de leur époque.
Ce sont ces idées que nous retrouverons au cœur de l’architecture
RISC (Reduced Instruction Set Computer), cf. ci-dessous.

2 La console de l’un d’eux, acquis par le CEA, figure dans les réserves du Musée
National des Techniques au Conservatoire National des Arts et Métiers, d’où
elle est parfois extraite pour des expositions temporaires.
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Cette technique du pipe-line et l’évolution consécutive des tech-
niques de compilation se sont beaucoup développées avec l’appari-
tion au milieu des années 1980 des processeurs à architecture RISC,
par opposition à la mode précédente rétrospectivement baptisée
CISC (Complex Instruction Set Computer).

9.3.3 Cycle de processeur, fréquence d’horloge
Qu’est-ce qu’un cycle de processeur ? Toutes les opérations dans

un processeur sont synchronisées par une horloge, ce qui permet de
savoir à quel moment le résultat d’une micro–opération va être dis-
ponible. J’appelle micro–opération une opération moins complexe
qu’une instruction, par exemple une étape d’instruction telle que
décrite à la section 9.2. Il est nécessaire de savoir à quel instant
précis telle modification de tel registre sera disponible et stable,
pour pouvoir enchaîner la micro–opération suivante : c’est le rôle
de l’horloge.

Comment fonctionne l’horloge du processeur ? Elle repose sur
un dispositif à quartz, qui régule un circuit oscillant selon une fré-
quence extrêmement précise. À chaque fin de période le circuit os-
cillant émet un signal. On rappelle que la période est l’inverse de
la fréquence : si un circuit a une période de 1/50 de seconde, on dit
que sa fréquence est de 50 Herz (Hz). La sortie du circuit logique
correspondant à une micro–opération est couplée à une entrée d’un
circuit ET dont l’autre entrée est couplée à l’horloge. À chaque
top d’horloge la porte ET délivre un résultat. Ainsi toutes les opé-
rations sont synchronisées. Ce que l’on appelle la fréquence d’un
processeur est la fréquence de son horloge.

9.3.4 Processeurs asynchrones
Ce cadencement des opérations simplifie grandement la concep-

tion des circuits, mais on peut imaginer qu’il fait perdre du temps
à certains endroits : toutes les micro-opérations ne durent pas le
même temps et certains résultats obtenus ne sont pas disponibles
parce qu’on attend le top d’horloge. Aussi existe-t-il un domaine
de recherche prometteur, les processeurs asynchrones. La synchro-
nisation est remplacée par la signalisation : un élément de circuit
qui obtient un résultat prévient le consommateur de ce résultat par
l’émission d’un signal, ce qui nous place dans une logique assez sem-
blable à celle des protocoles de réseau, où l’on ignore toujours ce qui
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se passe « à l’autre bout ». Parmi les avantages collatéraux fournis
par l’asynchronisme, signalons une consommation électrique et des
interférences électromagnétiques réduites.

Comme beaucoup de techniques avancées, les processeurs asyn-
chrones sont aujourd’hui un domaine assez confidentiel, mais qui
pourrait connaître une grande expansion au fur et à mesure que les
progrès des processeurs classiques deviendront plus laborieux.

9.3.5 Apport de performances par le pipe-line
Le pipe-line est un facteur considérable d’accélération des pro-

cesseurs, et notamment d’augmentation de la fréquence nominale.
Supposons une architecture classique où le temps total d’exé-

cution d’une instruction simple telle qu’un chargement de registre
ou une addition registre à registre correspond à un ou deux cycles
(même si des instructions complexes peuvent prendre dix ou vingt
cycles).

Prenons maintenant une architecture avec un pipe-line à cinq
étages, comme dans notre exemple, et avec des éléments micro–
électroniques aussi rapides que notre architecture classique hypo-
thétique. Notre instruction va prendre le même temps pour s’exécu-
ter, mais elle est maintenant cadencée par le passage dans les cinq
étages du pipe-line. Chaque étage correspond à un cycle. L’instruc-
tion qui s’exécutait en deux cycles s’exécute maintenant en cinq
cycles, toujours dans le même temps : c’est que chaque cycle est
plus court. La fréquence a été multipliée par 2,5. C’est ainsi que
le pipe-line est l’arme secrète qui permet les fréquences élevées des
processeurs contemporains.

Certes, pour une instruction donnée chaque cycle « fait » moins
de choses, mais ce n’est pas une escroquerie : à chaque fin de cycle
il y a bien livraison du résultat d’une instruction. Enfin presque.
Parce qu’il y a quand même des difficultés qui s’opposent parfois
au fonctionnement continu du pipe-line.

9.3.6 Limite du pipe-line : les branchements
La première difficulté inhérente au pipe-line est de bon sens : on

commence à exécuter plusieurs instructions consécutives, mais s’il
y a un débranchement au milieu l’ordre d’exécution sera modifié.
Notre processeur aura commencé à exécuter des instructions dont
la suite des événements montre que ce n’était pas les bonnes.
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Quand sait-on si un branchement conditionnel a effectivement
lieu ? Lors de l’étape EXEC. Quand est-il exécuté ? Lors de l’étape
MEM.

Si par exemple i3 est un branchement conditionnel et que le che-
min choisi soit effectivement le débranchement, cette condition est
connue lors de l’étape EXEC de i3. À ce stade, i4 est déjà passée par
les étapes FETCH et DEC, i5 par l’étape FETCH. Rien d’irrémédiable
n’a été accompli, ni accès mémoire ni écriture de résultat, mais on
a perdu du temps, en exécutant des étapes pour des instructions
inutiles et il faut « vider » la suite du pipe-line pour le recharger
avec d’autres instructions.

Il est assez clair que si les débranchements sont fréquents le
gain de performances procuré par le pipe-line va fortement dimi-
nuer. Plus le pipe-line a d’étages plus la pénalité sera forte, et dans
certains cas il sera nécessaire de restituer à certains registres leur
valeur antérieure, modifiée par une exécution trop hardiment anti-
cipatrice. Le processeur devra comporter des circuits logiques des-
tinés à traiter ces situations de retour en arrière. On le voit, tout
gain de performance a un coût qui en atténue l’avantage.

Les architectes de processeurs déploient des techniques très sub-
tiles pour éviter l’occurrence trop fréquente de ces situations de
débranchement (de saut) où le pipe-line « cale » (to stall). La pré-
diction de branchement consiste à essayer de savoir à l’avance, par
l’examen anticipé du texte du programme, si un branchement va
avoir lieu, et dans ce cas modifier l’ordre des instructions pour
annuler le branchement. Dans le cas d’une section de programme
répétitive, l’historique des exécutions permet de savoir quels sont
les branchements les plus probables et de réorganiser le texte du
programme pour que le cas le plus fréquent se déroule sans bran-
chements. En désespoir de cause on peut recourir à la technique
du « branchement retardé » qui consiste à insérer une instruction
nulle derrière le branchement, ce qui évite d’avoir à commencer des
instructions qu’il faudra annuler : ceci n’est jamais nécessaire dans
notre exemple de pipe-line à cinq étages, mais peut l’être avec un
plus grand nombre d’étages ; dans ce cas la détection de branche-
ment pourrait intervenir après que les instructions suivantes auront
modifié des registres, qu’il faudrait alors restaurer à leur valeur pré-
cédente, ce qui serait extrêmement complexe.

Les auteurs de compilateurs sont aussi mis à contribution dans
la lutte contre les branchements. Ils sont invités à produire du code
machine aussi exempt de branchements que possibles, à anticiper
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les cas les plus probables pour leur réserver l’exécution la plus li-
néaire possible. Évidemment ces efforts ne réussissent pas toujours
et il reste des branchements à détecter dynamiquement, c’est-à-
dire lors de l’exécution (par opposition à une détection statique,
par l’examen du texte du programme).

9.3.7 Limite du pipe-line : les interruptions
La seconde difficulté de réalisation d’un pipe-line efficace est

d’une nature voisine de celle que nous venons d’examiner, mais
encore plus redoutable. Nous avons bien des difficultés avec les dé-
branchements, mais au moins ce sont des événements internes à un
programme, à un processus et à un processeur. Mais qu’en est-il
lorsque survient un événement asynchrone, dont le type par excel-
lence est l’interruption ?

Dans une architecture traditionnelle, von-Neumannienne de
stricte obédience, le processeur à un instant donné exécute au plus
une instruction. La valeur du compteur ordinal (PC, eip...) désigne
exactement la limite entre ce qui est déjà exécuté et ce qui reste à
exécuter. C’est en général après la terminaison de chaque instruc-
tion que le processeur scrute les registres de contrôle des interrup-
tions pour savoir s’il y en a une en attente, auquel cas il décide
de la traiter, ou de ne pas la traiter d’ailleurs si les interruptions
sont masquées à ce moment. Le cas des interruptions pour faute de
page est un exemple de situation un peu différente, où le PC après
l’interruption doit pointer sur l’instruction qui a causé la faute afin
qu’elle puisse être exécutée à nouveau, la page étant désormais en
mémoire. Le problème est assez bien circonscrit.

Avec une architecture à pipe-line, l’interruption survient dans
un contexte où plusieurs instructions sont en cours d’exécution à des
stades variés. La valeur du compteur ordinal ne rend pas forcément
fidèlement compte de la limite entre ce qui est exécuté et ce qui ne
l’est pas. Sans doute, elle donne l’adresse de la prochaine instruction
à introduire dans le pipe-line, plus probablement que celle de la
dernière instruction exécutée. Bref, après avoir traité l’interruption
le processeur devra déterminer où il s’était arrêté dans le pipe-line
et trouver un état bien déterminé pour redémarrer, ce qui ne sera
pas simple.

Nous n’entrerons pas dans les détails de ce problème, qui re-
lève de l’architecture matérielle plus que du système d’exploitation,
mais sachons que pour mieux le cerner les processeurs modernes ont
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souvent deux types d’interruptions : les interruptions précises qui
laissent le processeur dans un état bien défini (PC sauvegardé en
un endroit connu, instructions antérieures à celle pointée par le PC
totalement exécutées, instructions ultérieures non entamées, état
de l’instruction courante connu), et les interruptions imprécises qui
laissent tout en chantier, charge au programmeur de système de
reconstituer une situation de redémarrage cohérente à partir des
informations d’état que le processeur aura obligeamment déversées
sur la pile. Il y a des cas où une interruption imprécise fait très
bien l’affaire, par exemple si elle correspond à une erreur fatale
l’état ultérieur du programme importe peu.

Pour prendre un exemple, l’architecture ARC 700 lancée en
2004 comporte un modèle d’interruptions précises qui permet, au
choix, de forcer la terminaison de toutes les instructions qui pré-
cèdent celle qui a provoqué l’exception ; d’annuler l’instruction fau-
tive avant de valider son résultat ; d’avertir la routine de traitement
des exceptions de la cause de l’exception ; et de relancer le pipe-line
après le traitement de l’exception dans l’état où il se trouvait au-
paravant.

Les interruptions précises augmentent considérablement la com-
plexité des circuits matériels dévolus au contrôle des interruptions,
et de ce fait les architectes essayent de les éviter. Les interruptions
imprécises sont de plus en plus populaires parmi les architectes de
processeurs, et comme d’habitude la complexité est renvoyée aux
concepteurs de systèmes d’exploitation, ce qui est après tout de
bonne politique : il est plus facile de modifier un paragraphe de
programme qu’un morceau de silicium (déjà installé dans le salon
du client de surcroît).

Lorsque nous aborderons le modèle d’exécution super-scalaire
quelques pages plus bas, nous verrons que les difficultés causées par
un contexte mal déterminé lors d’une interruption sont encore plus
graves.

9.4 RISC, CISC et pipe-line
9.4.1 Architecture des ordinateurs, avant les micropro-

cesseurs
Jusque dans les années 1970 les concepteurs d’unités centrales

(qui n’étaient pas encore des microprocesseurs) pensaient que les
progrès dans cet art viendraient de jeux d’instructions machine de
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plus en plus riches, qui rapprocheraient le langage machine des lan-
gages dits évolués, c’est-à-dire, par rapport au langage machine,
plus proches du langage humain. Il en résulta l’architecture dite
(ex-post) CISC, avec des instructions de plus en plus élaborées, qui
effectuaient des opérations complexes.

Entre les langages évolués et le langage machine il y a le lan-
gage assembleur, dont les instructions sont, une pour une, celles du
langage machine, mais écrites selon une graphie plus confortables.
L’assembleur procure aussi quelques aides au programmeur, notam-
ment des symboles pour représenter les adresses, le calcul automa-
tique du déplacement entre deux adresses, etc. Chaque instruction
machine occupe en mémoire un nombre de mots déterminé, rigide,
un programme assembleur n’est pas un texte dont la composition
serait laissée à la discrétion du programmeur, la disposition du texte
correspond à sa disposition dans la mémoire de l’ordinateur.

9.4.2 Apogée des architectures CISC
Les machines CISC qui ont connu leur apogée au début des an-

nées 1980 (VAX de Digital Equipment Corporation, 68000 de Mo-
torola) avaient un jeu d’instructions très vaste (plus de 300 pour
le VAX) et très complexe, avec des instructions de longueurs dif-
férentes, et même parfois de longueur variable selon les opérandes.
La richesse du jeu d’instructions était censée faciliter la tâche des
programmeurs qui utilisaient le langage assembleur et, surtout, des
auteurs de compilateurs pour langages évolué, en leur fournissant
des instructions machine qui ressemblaient déjà à du langage évolué,
plus facile et maniable pour le programmeur. D’ailleurs le langage
C, langage évolué de bas niveau (on a pu le qualifier d’assembleur
portable, la notion de portabilité désignant l’aptitude à fonctionner
sur des ordinateurs d’architectures différentes), est assez largement
inspiré de l’assembleur des ordinateurs PDP, ancêtres des VAX.

Cette richesse et cette complexité du jeu d’instructions avaient
bien sûr un coût en termes de complexité et de lenteur du proces-
seur. Le risque était notamment que les instructions simples (char-
gement de registre depuis la mémoire, copie de registre vers la mé-
moire, addition registre à registre) soient condamnées à s’exécuter
aussi lentement que les opérations complexes (copie de zone mé-
moire à zone mémoire de longueur variable, opérations complexes
en mémoire). Le VAX notamment n’esquivait guère ce risque.
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9.4.3 Naissance de l’idée RISC
Dans la seconde moitié des années 1970 des chercheurs ont fait

des statistiques sur la composition en instructions des programmes
en langage machine, soit qu’ils aient été directement écrits en as-
sembleur, soit qu’ils aient été produits par un compilateur. Citons
notamment les travaux de D.A. Fairclough, (A unique micropro-
cessor instruction set, IEEE Micro, mai 1982 [51]). Ils constatèrent
d’abord que 43% des instructions étaient des déplacements de don-
nées d’un endroit à un autre, que le quart des instructions étaient
des branchements, ensuite que pour chaque programme le nombre
d’instructions utilisées était très réduit, enfin que seules les instruc-
tions les plus simples étaient largement utilisées. Une autre consta-
tation était que les opérations de loin les plus coûteuses étaient
l’appel de sous-programme (un programme lance l’exécution d’un
autre programme en lui communiquant des paramètres) et le retour
d’un sous-programme au programme principal.

Sur la base de ces constatations ils préconisèrent de concevoir
des processeurs avec un jeu réduit d’instructions plus simples. La
notion de processeur RISC était née, et le premier processeur de
ce type, l’IBM 801, fut réalisé par John Cocke en 1979. La société
MIPS, fondée par John Hennessy, pionnier du RISC à l’Université
Stanford, fut créée en 1985. Hewlett-Packard fut le premier grand
constructeur d’ordinateurs à réaliser toute sa gamme en architec-
ture RISC en 1986. Sun et Digital Equipment suivirent.

9.4.4 Avènement des microprocesseurs RISC
Le livre emblématique de la révolution RISC, Computer ar-

chitecture : a quantitative approach [57], a été écrit par John L.
Hennessy, l’architecte des processeurs MIPS, et David A. Patter-
son, originaire du campus de Berkeley, l’architecte des processeurs
SPARC de Sun. Les processeurs MIPS ont été les premiers à dé-
fricher la voie, et les plus hardiment innovateurs : nous l’avons vu
au chapitre 4 à propos de l’utilisation du TLB. Il faudrait ajouter
à ce répertoire Richard L. Sites, l’architecte des processeurs Alpha
de Digital.

Les traits les plus frappants initialement dans les architectures
RISC étaient le petit nombre d’instructions, avec l’absence d’ins-
tructions mémoire–mémoire : il n’y avait que des chargements de
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mémoire dans un registre, des copies de registre vers la mémoire et
des opérations dans les registres.

D’autres traits se révélèrent bientôt aussi importants : longueur
et format d’instruction fixes, usage intensif du pipe-line. Pour tirer
parti correctement d’une architecture aussi ascétique une grande
part de la complexité était reportée sur les compilateurs, qui de-
vaient produire un code capable d’utiliser efficacement les registres
et le pipe-line.

La nouvelle architecture se révéla bientôt extrêmement rapide,
et doublement rapide : en effet, pour tirer parti d’un progrès de la
micro-électronique, il ne suffit pas de concevoir un processeur ra-
pide, il faut aussi que le délai nécessaire à sa conception ne soit
pas trop long. La simplicité du RISC était aussi un atout de ce
côté. Actuellement il faut à peu près trois ans à une équipe de 100
à 200 ingénieurs pour concevoir un nouveau processeur. Une usine
entièrement équipée pour le construire coûtera de l’ordre de quatre
milliards de dollars. La conception d’une architecture novatrice de-
mande une douzaine d’années.

9.4.5 Résistance des architectures CISC
La technologie CISC parut condamnée, ce qui fut effectivement

le cas pour les gammes VAX et Motorola 68000. Tout le monde at-
tendait la chute de l’architecture x86 d’Intel, sur laquelle reposent
les dizaines de millions de PC vendus chaque année. C’était comp-
ter sans les efforts qu’Intel pouvait mobiliser grâce à la rente du PC.
Les Pentium actuels, depuis le Pentium Pro de 1995 (architecture
P6 conçue par Bob Colwell), sont en fait des processeurs constitués
d’un noyau RISC autour duquel des circuits supplémentaires et du
micro-code (notion introduite ci-dessous à la section 9.4.7) simulent
l’ancienne architecture CISC afin de préserver la compatibilité avec
les systèmes et les programmes existants. On se reportera pour plus
de détails à un excellent article de Samuel « Doc TB » Demeule-
meester pour Canard PC Hardware [43], qui retrace toute l’histoire
des processeurs Intel.

Quant à la gamme des grands systèmes IBM, l’immense stock
de programmes existants dont la conversion exigerait des dépenses
phénoménales semble la vouer à une immortalité dont l’érosion ne
se fait qu’au gré du changement lent des applications.

L’évolution du début des années 2000 a suggéré un demi-échec
de l’architecture RISC, qu’Intel et HP croyaient pouvoir remplacer
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par l’architecture VLIW (Very Long Instruction Word) avec IA-64,
qui s’est révélée un échec. Le mouvement RISC a profondément ré-
volutionné la conception des processeurs et aussi, de façon moins
spectaculaire mais aussi profonde, celle des techniques de compi-
lation. En fait, hommage du vice à la vertu, tous les processeurs
modernes comportent un cœur RISC entouré de circuits qui pro-
curent un décor différent, Pentium par exemple (cf. p. 386).

Même les grands systèmes IBM sont maintenant animés par
des microprocesseurs qui implémentent leur jeu d’instructions tra-
ditionnel en RISC.

9.4.6 L’avenir appartient-il au RISC ?
Si le marché des ordinateurs, serveurs comme appareils person-

nels, est encore monopolisé par les architectures CISC d’Intel (et ac-
cessoirement d’AMD, qui produit des processeurs compatibles x86),
il faut mesurer les conséquences de l’extraordinaire prolifération des
téléphones mobiles et des tablettes, qui sont des ordinateurs Turing-
complets propulsés par des processeurs RISC de conception ARM.
Ces processeurs sont de loin les plus répandus dans le monde, et
si il y a quinze ans les accès au Web émanaient pour plus de 95%
d’ordinateurs x86 sous Windows, aujourd’hui pour plus de 50% ils
viennent d’appareils sous Android ou, sous iOS dotés de processeurs
ARM.

Si les concepteurs de ces appareils portables ont choisi la plate-
forme ARM, c’est pour de bonnes raisons : à puissance de cal-
cul comparable, le poids et la consommation électrique sont bien
moindres, d’au moins un ordre de grandeur. Il est tout à fait pos-
sible que les processeurs ARM, qui ont commencé leur carrière de
façon quasi-artisanale, soient au cœur des architectures de demain.

Si les processeurs ARM sont les plus répandus, il convient de
noter que la maison ARM (achetée en 2016 par le fonds japonais
SoftBank) ne fabrique ni ne vend aucun microprocesseur, pas un
seul, et d’ailleurs en termes de chiffre d’affaires c’est un nain au
regard d’Intel : 1,17 milliard d’euros en 2017 (ce fut une entreprise
britannique, basée à Cambridge, dont Apple fut actionnaire fon-
dateur). D’où viennent alors ces milliards de processeurs, et où
vont-ils ? La seconde question est celle qui appelle la réponse la
plus simple : les processeurs ARM sont dans votre Game Boy, votre
iPhone, votre iPad, votre appareil photo Canon, votre téléphone
Samsung ou LG, etc. Et sans doute aussi dans votre voiture, votre
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téléviseur, la box qui vous relie à l’Internet, votre GPS, votre cadre
pour photos numériques, etc.

Naguère, l’électronique de ces types d’appareils était assez rudi-
mentaire, mais aujourd’hui les processeurs ARM qui les équipent en
font des ordinateurs universels complets, Turing-complets comme
disent les informaticiens.

Si ARM ne fabrique pas de processeurs, d’où viennent-ils ? Les
6 250 employés d’ARM (en 2018) conçoivent l’architecture des cir-
cuits et en réalisent les plans numériques. ARM vend ces plans à des
entreprises, qui éventuellement les intègrent à des ensembles plus
vastes, et qui les fabriquent ou les font fabriquer par des fonderies
de silicium, dont les plus importantes sont Samsung, le taïwanais
TSMC, le franco-italien STMicro, ou encore Global Foundries.

9.4.7 Micro-code : le retour
Le micro-code était un élément architectural intermédiaire entre

le logiciel et le matériel, caractéristique des processeurs CISC, à peu
près disparu sur les processeurs RISC. En fait il s’agissait d’une
couche de logiciel de très bas niveau qui simulait certains éléments
de matériel pour les présenter au logiciel. Ainsi l’architecture 360
comportait 16 registres généraux, mais les modèles les plus petits
comme le 360/20 n’en avaient que deux (un accumulateur et un
registre). La couche de micro-code, stockée dans une mémoire spé-
ciale, présentait au système d’exploitation une machine virtuelle à
16 registres, implantée sur la machine réelle à deux registres. Une
disquette permettait de charger en mémoire une nouvelle version
du micro-code. Le BIOS des PCs Intel joue un peu le même rôle,
il sert notamment à présenter les périphériques au système sous un
aspect différent de leur réalité physique, ce qui permet par exemple
de voir tous les disques de la même façon, avec un adressage linéaire
des blocs de données, quelle que soit leur structure réelle. Le micro-
code était un facteur de complexité et de lenteur, ce pourquoi la
révolution RISC en a fait table rase. Mais ne survit-il pas en fait
à l’intérieur du processeur ? Si bien sûr : les processeurs modernes
sont si complexes et embarquent tellement de mémoire sur le chip
(la puce proprement dite) que leur réalisation est elle-même micro-
programmée. Le processeur Intel Pentium, de la famille CISC, est
construit autour d’un cœur RISC entouré de micro-code qui simule
l’architecture officielle (cf. p. 386). Le micro-code est aussi présent
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dans les contrôleurs de disques et autres périphériques. À l’heure
où il a officiellement disparu, il n’a jamais autant existé.

9.5 Super-scalaire
La décomposition des instructions en étapes plus élémentaires

que nous avons examinée à la section 9.2 permet le pipe-line, mais
aussi une autre forme de simultanéité que l’on appelle « super-
scalaire », et qui consiste à avoir plusieurs unités d’exécution actives
simultanément, selon le modèle de la figure 9.1. Ce modèle d’exécu-
tion se combine avec le pipe-line dans les architectures modernes.

Exec

Exec

Exec

Exec

BufferFetch Decode

Figure 9.1 – Modèle de l’exécution super-scalaire.
Les instructions sont décodées à l’avance et emmagasinées dans

le buffer, qui est en fait un jeu de registres. Dès qu’une unité d’exé-
cution se libère, une instruction est extraite du buffer pour être
exécutée. L’architecture super-scalaire de la figure 9.1 peut exécu-
ter quatre instructions par cycle. Si de plus le pipe-line a divisé le
temps de cycle par trois, la combinaison de ces deux techniques a
multiplié la vitesse de notre processeur par 12 à technologie micro-
électronique constante. Évidemment, ceci est vrai en l’absence de
dépendances entre les données manipulées par les instructions suc-
cessives, parce que si le pipe-line introduisait des problèmes en cas
de branchement, le traitement super-scalaire introduit des risques
de collisions de données. Supposons une machine à seize registres,
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deux unités d’exécution et le programme suivant :
No Buffer Unité Unité

d’exécution 1 d’exécution 2
1 R2 + R3 → R4
2 R5 - R6 → R7
3 LOAD R8, COUNT
4 R8 * R2 → R3

R2 + R3 → R4 R5 - R6 → R7
conflit de données → LOAD R8, COUNT
potentiel évité ici R8 * R2 → R3

Le conflit de données est le suivant : l’instruction 3 charge le
registre R8 avec la valeur contenue à l’adresse mémoire COUNT.
L’instruction 4 effectue la multiplication des contenus des registres
R8 et R2 et écrit le résultat dans R3. L’écriture rigoureusement
fidèle à von Neumann de notre programme stipule une exécution
séquentielle, l’instruction 4 suit l’instruction 3 et utilise dans R8 la
valeur que cette dernière y aura déposée.

Si nous lançons l’instruction 3 dans l’unité d’exécution 1 et, si-
multanément, l’instruction 4 dans l’unité d’exécution 2, quelle sera
la valeur du contenu de R8 utilisée par l’instruction 4 ? Celle qui
résulte de l’exécution de l’instruction 3, ou celle qu’il contenait au-
paravant ? La réponse à cette question est indéterminée, et pour
maintenir la sémantique d’une machine de von Neumann le pro-
cesseur doit contenir une logique capable de détecter ce problème
et de décider de ne pas exécuter ces deux instructions simultané-
ment, ce qu’illustre notre figure. Cette détection doit avoir lieu dy-
namiquement, à la volée, pour chaque exécution de cette séquence
d’instructions.

L’évitement des conflits de données complique le circuit et dimi-
nue le bénéfice attendu de l’architecture super-scalaire. Ce bénéfice
reste néanmoins suffisant pour que tous les processeurs modernes
utilisent ces techniques, même au prix d’une complexité propre-
ment diabolique. La section suivante nous montrera comment les
architectes de processeurs se sont débarrassés de cette complexité
et ont passé la patate chaude aux auteurs de compilateurs.

Bien évidemment, les difficultés que nous avons signalées à la
section 9.3.7 au sujet du pipe-line et qui procèdent de la surve-
nue d’événements asynchrones (les interruptions) dans un contexte
où plusieurs instructions sont en cours d’exécution à des stades va-
riés d’achèvement, ces difficultés se retrouvent encore aggravées par
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l’exécution super-scalaire, puisque ce modèle respecte encore moins
l’ordre d’exécution que le pipe-line.

9.6 Architecture VLIW (Very Long Instruction
Word)

Les modèles d’exécution en pipe-line et super-scalaire ont l’avan-
tage considérable sur les architectures SIMD ou MIMD de préser-
ver la sémantique de l’architecture de von Neumann, ce qui permet
de continuer à utiliser les langages de programmation traditionnels
avec les méthodes et les compétences qui existent et qui sont éprou-
vées. Le prix à payer pour cet avantage, c’est d’avoir à faire de la
prédiction de branchement, de la prévention de conflits de données
et du traitement d’interruptions imprécises, et nous avons vu que
ce n’était pas précisément simple.

L’espoir forcément est né de bénéficier des avantages sans avoir
à supporter les inconvénients. La différence entre le monde de la
technique et celui des relations humaines, c’est que dans le premier
une telle idée est vertueuse.

Pour faire fonctionner pipe-line et multiples unités d’exécution
sans arrêts brutaux, il suffirait que le programme (ou plutôt le com-
pilateur qui traduit le programme en langage machine) « dise » au
processeur quelles sont les instructions susceptibles d’être exécu-
tées simultanément sans risque de conflit de branchement ou de
données, et que le processeur soit équipé d’un format d’instruction
capable de recevoir ces informations.

Les ingénieurs de Hewlett-Packard et d’Intel ont réuni leurs
efforts pour concevoir une telle architecture, connue sous le nom
propre IA-64, qui est une architecture VLIW (Very Long Instruc-
tion Word). La conception de IA-64 a pris une douzaine d’années
avant de déboucher en 2001 sur la livraison d’un premier processeur,
Itanium.

9.6.1 Parallélisme explicite
La méthode mise en œuvre par IA-64 s’appelle EPIC (Explicitly

Parallel Instruction Computing). Le processeur reçoit du compila-
teur une liasse (bundle) de 128 bits. Chaque liasse comporte trois
instructions de 41 bits et un masque (template) de 5 bits. Chaque
instruction comporte trois numéros de registre de sept bits chacun
(ce qui autorise 27 = 128 registres), six bits de registre de prédicat
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(predicate register) et un code opération de 13 bits.

Liasse (bundle) IA-64 :

Instruction Instruction Instruction Masque (5 bits)
(41 bits) (41 bits) (41 bits) (template)

Instruction IA-64 :

code no registre prédicat no registre 1 no reg. 2 no reg. 3
opération (predicate register)

Les cinq bits de masque indiquent quelles sont les instructions
qui peuvent s’exécuter en parallèle, ainsi que l’éventualité du chaî-
nage de cette liasse avec une autre liasse qui en contiendrait la
suite. Les compilateurs peuvent placer dans ce masque des valeurs
qui indiquent au processeur les instructions à lancer en parallèle 3.

Confier au compilateur tout ce travail auparavant réalisé par le
processeur présente plusieurs avantages. Le processeur ne possède
aucune information a priori sur le programme qu’il exécute, il ne
peut que les déduire du texte binaire au fur et à mesure qu’il en
décode les instructions, tandis que l’auteur du compilateur peut se
conformer à une stratégie systématique d’organisation des instruc-
tions.

De plus, le compilateur peut passer beaucoup de temps à opti-
miser le code, en principe le programme n’est compilé que par son
auteur, ou par celui qui l’installe sur un ordinateur, alors qu’il sera
exécuté par de nombreux utilisateurs. Il est efficace de consacrer
du temps à la compilation pour en gagner à l’exécution.

3 Pour ce faire, le processeur Itanium, premier de l’architecture IA-64, possède
deux unités d’exécution d’instructions arithmétiques entières, deux unités
d’exécution d’instructions arithmétiques à virgule flottante, trois unités de
chargement - déchargement de registre, un pipe-line à dix étages.
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9.6.2 Élimination de branchements
Imaginons le fragment de programme suivant en pseudo-langage

évolué :

Si I égale 0
Alors

instruction 1
Sinon

instruction 2

que le compilateur traduirait en pseudo–assembleur pour un pro-
cesseur RISC classique (non–EPIC) :

COMPARE I à 0
SAUTE à l'étiquette SINON si non-égal

ALORS: instruction 1
SAUTE à l'étiquette SUITE

SINON: instruction 2
SUITE:

Voici comment procédera un processeur EPIC :

COMPARE I à 0
commence à décoder instruction 1,

le prédicat positionné pour pointer sur le
registre de prédiction P1

commence à décoder instruction 2,
le prédicat positionné pour pointer sur le
registre de prédiction P2

si I égale 0, positionner le registre P1 à vrai (1),
positionner le registre P2 à faux (0)

calculer et délivrer les résultats de toutes les
instructions dont le prédicat pointe sur le
registre dont la valeur est vrai (1), en
l'occurrence P1.

Le processeur n’exécute aucun saut (débranchement), il com-
mence à exécuter simultanément les branches ALORS et SINON
comme s’il s’agissait d’instructions en séquence.

IA-64 prévoit 64 registres de prédicat susceptibles de recevoir
les valeurs vrai ou faux (0 ou 1). Le champ registre de prédicat
de chaque instruction pointe sur un registre de prédicat. Quand le
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processeur a fini de comparer I à 0, seuls les résultats des instruc-
tions qui pointent sur un registre de prédicat qui vaut vrai (1) sont
délivrés.

Considérons ce qui se passe : d’abord, il n’y a aucun risque à
commencer l’exécution simultanée des branches ALORS et SINON de
ce programme, il n’y a par construction aucune dépendance entre
elles puisqu’elles sont exclusives l’une de l’autre. Ensuite nous pou-
vons observer que notre pseudo–code EPIC ne comporte plus de
branchement : ce n’est pas un tour de passe-passe, cette suppres-
sion de la plupart des branchements est un fondement du modèle
EPIC.

Mais, pourra objecter le lecteur vigilant, en quoi cette sup-
pression des branchements peut-elle être bénéfique pour les perfor-
mances ? Après tout le processeur EPIC, en commençant à exécuter
les deux branches du programme, effectue deux fois plus de travail
qu’un processeur classique qui essaie de prévoir quelle branche va
être exécutée réellement (et il faut savoir que les processeurs mo-
dernes sont capables de faire une prédiction juste dans 90% des
cas), et la moitié de ce travail est inutile, puisque finalement seule
une des branches sera retenue.

Premier temps de la réponse à l’objection : d’abord exécuter les
deux branches en parallèle ne fait pas perdre de temps, puisqu’elles
sont indépendantes l’une de l’autre et que notre processeur dispose
de tous les bons dispositifs super-scalaires, notamment des unités
d’exécution multiples, pour que le parallélisme soit effectif. Ensuite,
pour les 10% de cas dans lesquels le processeur classique prédit la
mauvaise branche le gain est considérable, puisqu’alors le proces-
seur classique doit tout reprendre au départ. Enfin puisque le texte
du programme ne contient plus de branchements il n’est plus divisé
en petits blocs ALORS/SINON, ce qui autorise les instructions des
branches à être placées dans des liasses ou des chaînes de liasses,
associées aux instructions précédentes ou suivantes. Associées signi-
fie ici éligibles pour le parallélisme explicite.

9.6.3 Optimisation des accès mémoire : chargement anti-
cipé

Dans le modèle VLIW, comme dans le modèle RISC, les opé-
randes d’une instruction doivent être chargés dans des registres
avant d’être traités. L’exécution efficace de l’instruction LOAD est
donc un élément crucial de l’architecture. Pour en comprendre les
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ressorts nous invitons le lecteur à se remettre tout d’abord en mé-
moire ce qui a été écrit sur la technique du cache à la section 4.6.1.

Les développements sur le cache ont montré l’extrême impor-
tance de sa bonne gestion. Si par malheur au moment où le pro-
cesseur essayait d’exécuter une instruction LOAD la zone mémoire
recherchée n’était pas dans le cache il en résulterait une pénalité
de l’ordre de 20 cycles au moins, autant dire que le fruit de tous
nos efforts de parallélisme et de pipe-lining serait anéanti, et au-
delà. Il est donc crucial d’éviter de telles situations. Pour ce faire,
dès les années 1995, les processeurs les plus rapides (EPIC comme
l’Itanium, mais aussi RISC comme l’Alpha ou CISC comme l’AMD
Athlon) avaient recours au chargement anticipé dans le cache L1
des zones mémoires nécessaires aux instructions appelées à s’exé-
cuter dans les quelques dizaines de cycles qui suivaient. C’était le
chargement spéculatif, dont l’usage s’est depuis généralisé.

9.6.4 De la programmation VLIW
Arrivé ici, le lecteur sera en droit de penser que les notions

qu’il pouvait avoir de la programmation des ordinateurs viennent
de recevoir un sacré surcroît de complexité, et il n’aura pas tort.
Il pourra alors se dire que cette activité qui lui semblait banale
prend enfin des couleurs attrayantes, ou au contraire que c’est trop
effrayant et qu’il renonce à son projet de s’y engager.

En fait, ce qui se complique, c’est la programmation en langage
machine ou en assembleur. Aujourd’hui pratiquement personne ne
programme plus en langage machine, et quand on le fait ce sont
des programmes très brefs, comme une séquence d’amorçage (boot),
avec une exception : la connaissance du langage machine est indis-
pensable à la lutte contre les virus informatiques et autres logiciels
malfaisants, parce que c’est en langage machine que ces logiciels
peuvent être repérés, observés, analysés. Quant à la programma-
tion en assembleur, elle est réservée aux auteurs de systèmes d’ex-
ploitation et aux auteurs de compilateurs. L’immense majorité des
programmes sont écrits de nos jours en langage évolué, et sont tra-
duits en assembleur, puis en langage machine, par un compilateur.
Beaucoup de programmes embarqués (à bord d’avions, de voitures,
de fours à micro-ondes, de téléphones portables) étaient encore il
y a peu écrits en assembleur pour des raisons de performance et
d’encombrement : les progrès de la micro-électronique permettent
aujourd’hui de les écrire dans des langages hyper-évolués tels que
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Java ou Ada. Certains compilateurs ne sont pas écrits en assembleur
et ne produisent pas directement de l’assembleur : il traduisent le
langage source auquel ils sont destinés vers un langage cible de plus
bas niveau, qui dispose lui-même d’un compilateur vers l’assem-
bleur, appelé compilateur en mode natif.

Pour nous résumer, le lecteur qui se sent irrésistiblement attiré
par les subtilités de la programmation en assembleur pour une ar-
chitecture VLIW doit se tourner vers l’écriture de compilateurs ou
de systèmes d’exploitation. Il n’aura pas à le regretter, ce sont des
domaines passionnants, en évolution rapide et où le chômage ne
menace pas. Le lecteur que la complexité de ces techniques rebu-
terait peut être rassuré : l’auteur de programmes en langage évolué
n’a pas à se préoccuper de détails techniques d’aussi bas niveau,
les langages modernes procurent tous à leurs programmeurs un ni-
veau d’abstraction qui leur permet de se consacrer au problème à
programmer plutôt qu’aux détails techniques de l’ordinateur.
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10.1 Notion de machine virtuelle
Les chapitres qui précèdent ont montré à plusieurs reprises que

la conception d’une architecture informatique consistait le plus sou-
vent en grande partie à organiser des niveaux d’abstraction diffé-
rents afin de donner une intelligibilité supérieure à un mécanisme,
ou au contraire pour le dissimuler aux yeux de l’utilisateur. Nous
pouvons subsumer certains de ces artefacts sous la notion de ma-
chine virtuelle.

L’exemple le plus simple de machine virtuelle est donné par
certains langages de programmation interprétés, qui fonctionnent
finalement comme des calculettes : l’utilisateur entre au clavier une
phrase du langage, l’interpréteur évalue la phrase et donne la ré-
ponse. L’interpréteur se présente à son utilisateur comme un ordi-
nateur dont le langage machine serait le langage qu’en fait il traduit
à la volée. Il est une machine virtuelle du langage considéré. Basic,
Scheme, Python, le shell Unix sont des langages interprétés, par op-
position aux langages compilés comme C, Scheme (oui, il peut être
les deux), Ada, pour lesquels il faut d’abord écrire le texte du pro-
gramme jusqu’au bout, puis le soumettre à un traducteur appelé
compilateur qui le traduit en langage machine.

Le système d’exploitation présente une métaphore de l’ordina-
teur qu’il anime à l’utilisateur : celui-ci, en soumettant des phrases
du langage de commande (ou en agissant sur les objets de l’interface
graphique), agit symboliquement sur des abstractions, et déclenche



Notion de machine virtuelle 336

ainsi des actions réelles d’objets matériels. On peut dire que le sys-
tème d’exploitation exhibe une machine virtuelle qui représente de
façon stylisée et elliptique la machine réelle, dont les aspects les
plus sordides sont ainsi dissimulés.

10.1.1 Émulation et machines virtuelles
Assez tôt l’idée s’est fait jour qu’une telle possibilité pourrait

être mieux exploitée : puisqu’un système d’exploitation est capable
de donner une métaphore de la machine sous-jacente, pourquoi ne
pourrait-il pas représenter une autre machine, qu’il simulerait ? Un
tel programme est appelé un émulateur, dont on dit qu’il émule la
machine simulée. Ainsi aux temps préhistoriques IBM fournissait
un émulateur 7090 pour le système 360 qui permettait d’exploiter
sur ce dernier les programmes écrits pour le premier. Des émula-
teurs d’Unix sur VAX sous VMS ont existé, ainsi que des émulateurs
de VMS sous Unix. Apple et d’autres sociétés ont produit des logi-
ciels qui émulent un PC sous Windows sur un Macintosh. L’inverse
existe aussi d’ailleurs. Bref, il est ainsi possible d’utiliser le système
et les logiciels destinés à un ordinateur que l’on ne possède pas,
c’est pratique mais souvent les performances sont assez médiocres
parce qu’il faut exécuter en fait le code de trois systèmes : le vrai
système de la vraie machine, l’émulateur et le système émulé. Mais
au fil des ans les techniques d’émulation ont atteint une perfection
diabolique, et il est même possible d’exécuter sous Linux ou MacOS
des logiciels de jeux destinés à Windows, exercice particulièrement
délicat puisqu’il faut actionner des interfaces graphiques complexes,
des manettes de pilotage, joysticks, manches à balai 1 etc.

La société VMware Inc. de Palo Alto en Californie a développé
une technologie très élaborée d’émulation généralisée : son logiciel
de machine virtuelle, par exemple, peut fonctionner sur un PC à
processeur Intel sous Linux, et accueillir un système hébergé, par
exemple Windows. Tous les accès de Windows au matériel sont in-
terceptés de telle sorte que le système hébergé ne puisse pas faire

1 Il faut savoir qu’aujourd’hui ce sont les logiciels de jeux électroniques qui sont
le moteur de l’industrie du microprocesseur. Les processeurs actuels sont
en effet très suffisants pour satisfaire tout usage professionnel raisonnable
en dehors de certains domaines scientifiques assez spécialisés tels que la
mécanique des fluides, la sismographie, la météorologie, l’analyse génomique,
etc. Mais l’avidité des jeux est sans limite, et le marché des jeux est plus
vaste que celui de l’océanographie ou des souffleries numériques.
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la distinction entre un périphérique réel et l’abstraction présen-
tée par la machine virtuelle. L’émulateur peut d’ailleurs accueillir
simultanément plusieurs machines virtuelles tournant sous des sys-
tèmes différents. C’est particulièrement utile pour un développeur
qui veut tester ses programmes sur plusieurs types de plateformes.

10.1.2 De CP/67 à VM/CMS
La technologie mise en œuvre par VMware remonte en fait à

1967, date de lancement d’une machine dont nous avons déjà parlé
à la section 4.4.8, l’IBM 360/67, doté de l’« hyperviseur » CP/67
capable de supporter plusieurs machines virtuelles 360/65 tournant
sous des versions de système différentes. On voit bien que ce type
de méta-système a été inventé par les développeurs de systèmes
(en l’occurrence ceux du Cambridge Research Lab. d’IBM) pour se
faciliter la tâche en disposant de systèmes de test sans avoir à récla-
mer à leur management des machines supplémentaires, dont le prix
à l’époque se comptait en millions de dollars. CP/67 a engendré
VM/CMS, qu’IBM a commercialisé pendant les années 1970-1980.
L’idée de CP/67 et de VM/CMS était un micro-système très dé-
pouillé, fournissant des fonctions très élémentaires d’accès au ma-
tériel, et laissant la complexité au système des machines virtuelles
accueillies. Ce dépouillement avait d’ailleurs des avantages, à tel
point que certains clients utilisaient VM/CMS tout seul, sans ma-
chine virtuelle : ils disposaient ainsi d’une machine temps partagé
simple et bon marché. C’est peut-être pour cette raison qu’IBM a
laissé mourir VM/CMS, qui révélait que la complexité et la lour-
deur de ses autres systèmes était peut-être inutile...

10.2 Machines virtuelles langage : l’exemple
Java

La notion de machine virtuelle allait connaître un nouvel avatar
avec le lancement par Sun Microsystems du langage Java en 1995,
dont le concepteur principal était James Gosling. Rarement langage
aura suscité un tel engouement, justifié non pas par sa syntaxe, as-
sez banalement héritée de C débarassé de ses traits de bas niveau
tels que les pointeurs et augmentée d’une couche simple de gestion
des objets (ce qu’aurait dû être C++), ni par ses performances en
termes de vitesse de calcul, assez faibles pour les premières ver-
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sions (cela s’est bien amélioré, avec l’aide des progrès des micropro-
cesseurs), mais justement par sa machine virtuelle. Signalons trois
autres traits novateurs de Java :

— Il comporte un système de gestion des threads 2 dans le
langage ; les threads font l’objet de la section suivante,
mais disons qu’il s’agit d’un moyen de faire de la multi-
programmation à l’intérieur d’un processus utilisateur. Les
threads de Java sont une réalisation des moniteurs de
Hoare[58] (cf. p. 355).

— Le jeu de caractères standard de Java est Unicode, ce qui
autorise des identifiants en toutes sortes d’écritures, par
exemple l’écriture coréenne Hangul.

— Java comporte un glaneur de cellules (garbage collector, GC)
qui assure la gestion automatique de la mémoire, c’est-à-dire
que le GC implémente un algorithme heuristique d’alloca-
tion de pages mémoire lorsque l’exécution du programme
l’exige, et de libération de ces pages lorsqu’elles ne sont plus
utilisées (cf. p. 116 au chapitre qui traite de la mémoire et
de sa gestion). Ainsi le programmeur n’a plus à se préoc-
cuper d’effectuer « manuellement » des malloc et des free
de ses zones mémoire, sources d’erreurs de programmation
particulièrement vicieuses.

L’exécution d’un programme Java obéit à un enchaînement
d’opérations inhabituel. Le texte du programme source est d’abord
soumis à un compilateur, qui produit un résultat dans un langage
intermédiaire appelé bytecode. Ce langage intermédiaire est le lan-
gage d’une machine virtuelle Java (JVM), et il suffit de soumettre
le bytecode à l’interpréteur de la JVM pour que le programme s’exé-
cute 3.

Tout l’intérêt de la démarche réside dans le fait que la JVM est
normalisée, c’est-à-dire qu’un programme Java compilé peut être
exécuté tel quel sur n’importe quelle plate-forme (compile once,
run anywhere), à la différence d’un programme en langage classique
qui doit subir une compilation spécifique pour chaque architecture
de machine cible et chaque système. La JVM est conçue pour être
peu encombrante et sécurisée. Votre navigateur Web comporte une

2 Désolé, mais aucune des traductions proposées pour thread ne me semble
satisfaisante : activité, fil d’exécution, processus léger...

3 Cette technique de production d’un langage intermédiaire interprété n’est
pas inédite, elle a été utilisée par Pascal UCSD, LeLisp, Emacs Lisp, CAML...
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JVM embarquée. Ainsi, un serveur Web peut envoyer un petit
programme Java (en anglais applet, soit en français appliquette,
ou aplète) à votre navigateur Web et celui-ci saura l’exécuter sur
votre machine. Cela s’appelle du code mobile et en 1995 c’était
quand même assez révolutionnaire. Signalons qu’en 2018 Java est
en désuétude sur la plupart des navigateurs, parce que Html 5 et
JavaScript procurent des fonctions équivalentes de façon plus simple
et plus standardisée.

Cette possibilité pour un serveur d’exécuter du code sur une ma-
chine distante pose certes des problèmes de sécurité. Pour éviter les
malveillances les plus évidentes la JVM exécute les aplètes dans un
« bac à sable » (sandbox) qui les isole de l’environnement local. En
fait Java a causé moins d’incidents de sécurité que de plantages de
navigateurs ou de systèmes un peu fragiles ou que de chargements
interminables de pages HTML passionnantes. La technologie est
certes perfectible. En fait la principale cause du désenchantement
relatif que subit depuis quelque temps Java réside dans la politique
assez opaque du propriétaire de la technologie (aujourd’hui Oracle,
qui a racheté Sun), qui modifie arbitrairement les règles du lan-
gage, de son implémentation et du copyright afférent à ses API,
comme en témoigne un procès contre Google, dont le système An-
droid est écrit en Java. Ces péripéties détournent les développeurs.
Et le premier charme épuisé on redécouvre cette chose déplorable-
ment banale : réaliser les calculs sur un serveur central correctement
administré a quand même beaucoup d’avantages.

Quoi qu’il en soit, Java et sa JVM connaissent un grand suc-
cès parce que ce système est assez facile à installer dans toutes
sortes de petits processeurs qui peuplent les téléphones portables,
les machines à laver, les routeurs d’appartement, les voitures, les
caméscopes, les cartes à puce, etc., et cela renouvelle entièrement la
programmation de ce genre d’objets, qui était auparavant de la ma-
gie noire. Les applications destinées au système mobile Android re-
posent pour la plupart sur un système Java doté d’une machine vir-
tuelle particulière, naguère Dalvik, aujourd’hui remplacé par ART
(abréviation de Android Runtime). Les threads permettent même la
réalisation de mini-systèmes d’exploitation en Java. Signalons aussi
l’apparition de compilateurs pour d’autres langages que Java vers
le bytecode, ce qui diversifie les moyens de créer des aplètes. Ainsi
le compilateur Bigloo permet d’écrire ses aplètes en Scheme. Men-
tionnons également Scala, langage qui produit du bytecode JVM
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à partir d’une syntaxe proche de Java mais plus concise et plus
élégante.

10.3 Machines virtuelles système
La présente section est consacrée aux machines virtuelles qui

permettent d’émuler un système informatique complet (par oppo-
sition aux machines virtuelles langage, comme celle de Java, décrite
ci-dessus).

10.3.1 Que veut-on virtualiser ?
Ainsi que nous l’avons vu lors des premiers chapitres de ce livre,

on peut résumer le rôle du système d’exploitation en disant qu’il
est de présenter à l’utilisateur d’un calculateur (utilisateur qui peut
d’ailleurs être un autre programme) une vue simplifiée et stylisée
du calculateur sous-jacent. En effet, le système d’exploitation d’un
ordinateur physique doit effectuer des opérations sur des disques
durs, écrans, imprimantes et autres dispositifs matériels, dits pé-
riphériques, dont il existe une grande variété. Il est indispensable
d’interposer une couche d’abstraction entre ces matériels et l’utili-
sateur : je peux recopier le texte de mon programme sur mon disque
dur sans savoir combien celui-ci possède de pistes et combien il peut
stocker de caractères par piste. Le système d’exploitation me cache
ces détails, qui n’ont aucun intérêt pour moi, mais que l’ingénieur
qui écrit le sous-programme du système chargé d’écrire sur le disque
doit connaître (ce sous-programme se nomme un pilote d’appareil
périphérique, en anglais driver). Incidemment, la prise réseau est
un périphérique comme un autre.

De même, le système d’exploitation me cache les méthodes com-
plexes grâce auxquelles je peux exécuter simultanément sur mon
ordinateur plusieurs logiciels : naviguer sur le Web, y copier des
données pour les recopier dans la fenêtre du traitement de texte,
imprimer un autre texte, etc.

En fait, tous les autres programmes sont des sous-programmes
du système d’exploitation.

10.3.2 Pratique des machines virtuelles
Développons les idées de la section 10.1.1 ci-dessus pour décrire

les usages modernes des machines virtuelles système.
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Dans le cas simple, sans recours à la virtualisation, il y a un
ordinateur, sur cet ordinateur est installé un système d’exploita-
tion, et ainsi on peut exécuter des programmes sous le contrôle de
ce système d’exploitation, qui s’interpose entre le programme et
le matériel de l’ordinateur. Le matériel, ce sont des appareils qui
sont capables d’émettre et de recevoir des signaux électroniques qui
commandent leur fonctionnement.

Maintenant, instruit par les chapitres précédents, je peux écrire
un logiciel qui se comporte en tout point comme un autre ordina-
teur (qui le simule, ou qui l’émule, selon le jargon en usage). Et
ce simulacre d’ordinateur peut accueillir un système d’exploitation,
qui lui même permettra l’exécution de logiciels. Ce logiciel qui fait
semblant d’être un ordinateur, on l’appelle une machine virtuelle.
Sur un ordinateur physique, je peux ainsi avoir plusieurs machines
virtuelles qui émulent plusieurs autres ordinateurs physiques et/ou
plusieurs autres systèmes d’exploitation. C’est très pratique pour
les usages suivants :

— Tester un nouveau système sans mobiliser un ordinateur à
cet effet.

— Avoir plusieurs systèmes actifs simultanément sur le même
ordinateur : Linux, OpenBSD, Windows...

— Il est même possible d’avoir une machine virtuelle qui simule
un ordinateur physique d’un modèle différent de la machine
d’accueil, avec un jeu d’instructions (une architecture maté-
rielle) différent(e).

— Comme les machines virtuelles ont des système d’exploita-
tion différents, deux logiciels qui fonctionnent sur deux ma-
chines virtuelles différentes sont mieux isolés l’un de l’autre
que s’ils coexistaient sous le contrôle du même système, ce
qui a des avantages en termes de sécurité.

— Une machine virtuelle est constituée de logiciel, et aussi des
données nécessaires à son fonctionnement, telles que para-
mètres du système et données des utilisateurs, enregistrées
sur support persistant. L’ensemble constitué du texte du lo-
giciel de la machine virtuelle et des données persistantes as-
sociées constitue l’image physique de la machine virtuelle,
recopiable, transférable par le réseau.

— Une machine virtuelle, c’est du logiciel et des données, donc
il est possible de la recopier comme un document ordinaire ;
ainsi, avec la virtualisation, l’administration des systèmes
devient plus facile : déplacer un serveur, c’est déplacer un
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fichier, le sauvegarder, c’est copier un fichier sur une clé
USB, doubler un serveur, c’est recopier un fichier, cela prend
quelques secondes et quelques clics de souris, sans se dé-
placer en salle machine (on dit maintenant centre de don-
nées) ; c’est sur ce principe que repose l’informatique dans
les nuages (cloud computing), qui consiste à créer à la de-
mande de nouvelles machines virtuelles et à les déplacer par
le réseau sur les machines physiques les moins chargées, par
exemple en Nouvelle-Zélande pour profiter du décalage ho-
raire.

— Bien sûr, pour tout ce qui est enseignement, travaux pra-
tiques, expériences, c’est très commode.

10.3.3 Différents niveaux de virtualisation
Comme la virtualisation repose sur du logiciel qui simule du

matériel, l’imitation peut se faire de diverses façons, selon le niveau
d’indépendance souhaité pour nos machines virtuelles :

— S’il faut simplement des systèmes isolés les uns des autres sur
la même machine physique, il existe des systèmes de cloison-
nement qui procurent à chaque logiciel serveur un environne-
ment qui donne l’illusion de disposer d’une machine privée :
containers Linux, jail FreeBSD. Le système Docker est une
réalisation assez réussie de containers Linux, qui peuvent
même fonctionner sous Windows, et qui peuvent être multi-
pliés et déployés dans les nuages grâce au système d’orches-
tration Kubernetes, par exemple. Il y a en fait sur chaque
machine physique un seul système d’exploitation en service,
mais chaque serveur fonctionne comme s’il était seul, ce qui
lui confère une sécurité accrue (sauf défaillance du logiciel).

Conteneur Conteneur

Matériel

OS d'accueil

Système
de

supervision
des

conteneurs

Programmes
d'un

utilisateur

Programmes
d'un autre
utilisateur

...

Figure 10.1 – Système de cloisonnement (virtualisation simplifiée).
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— S’il faut vraiment des machines virtuelles distinctes, mais
toutes sur le même modèle de processeur (même architec-
ture matérielle), il faudra interposer entre le matériel et
les différentes copies du système d’exploitation un logiciel
de simulation, mais les opérations élémentaires seront néan-
moins effectuées par le matériel sous-jacent, ce qui évitera la
grande diminution des performances qui serait entraînée par
la simulation en logiciel des dites opérations. VMware, Xen,
KVM, Citrix, Microsoft Hyper-V Server sont de tels sys-
tèmes, nommés hyperviseurs. Les hyperviseurs sont en fait
des systèmes d’exploitation allégés de beaucoup des fonc-
tions qui seront dévolues aux OS hébergés. Les processeurs
modernes sont équipés de dispositifs matériels qui facilitent
leur exécution (Intel VT et AMD Pacifica).

OS invité OS invité

Matériel

Hyperviseur

Système
d'exploitation

(OS)
privilégié

Programmes
d'un

utilisateur

Programmes
d'un autre
utilisateur

...

Programme
de contrôle

Figure 10.2 – Système hyperviseur (virtualisation sur architecture identique).

— Ce n’est que si l’on veut simuler sur un ordinateur phy-
sique d’architecture A une machine virtuelle d’architecture
B qu’il faudra simuler sur A, par du logiciel, le jeu d’opéra-
tions élémentaires de B, ce qui aura un coût élevé en termes
de performances. QEMU est un logiciel libre d’émulation de
processeur, qui offre ce type de possibilité, par l’intermé-
diaire d’un hyperviseur tel que Xen ou KVM.

— Toutes ces machines virtuelles peuvent bien sûr communi-
quer entre elles et avec le vaste monde par un réseau... vir-
tuel évidemment ! mais qui doit néanmoins établir des passe-
relles, voire des ponts, avec le réseau réel, par l’intermédiaire
de routeurs et de commutateurs virtuels : tous les systèmes
de virtualisation modernes fournissent ce type d’accessoire,
dès lors que l’on sait virtualiser, on peut tout virtualiser.
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OS invité OS invité

Machine virtuelle Machine virtuelle
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Système de
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Programmes
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Programmes
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...

Émulateur

Figure 10.3 – Système de virtualisation complète.

Comme une machine physique, une machine virtuelle peut être
« démarrée » et « arrêtée » ; dans ce cas il s’agira en réalité du
lancement d’un programme et de son arrêt.

10.3.4 Administration d’un système informatique
Pour maintenir en état de marche correct un ordinateur (réel

ou virtuel), un certain nombre de tâches doivent être effectuées
régulièrement, notamment :

— mise à jour du système d’exploitation et des logiciels à partir
des nouvelles versions fournies par les éditeurs ;

— mise à jour des bases de données des systèmes anti-virus et
anti-intrusion ;

— mise à jour de la base de données des utilisateurs autorisés
pour tenir compte des arrivées et des départs ;

— consultation quotidienne des journaux d’incidents ;
— sauvegarde des données ;
— vérification de la disponibilité d’un espace de stockage de

données suffisant ;
— application des corrections de sécurité pour supprimer les

vulnérabilités connues.
Ces opérations (la liste n’est pas complète), que nous désigne-

rons du terme d’ « administration système », peuvent être en partie
automatisées, elles sont bien sûr moins absorbantes pour un poste
de travail personnel que pour un serveur avec des dizaines d’utilisa-
teurs directs, ou que pour un serveur Web ouvert à tous les publics,
mais elles constituent une part importante du travail des ingénieurs
système, que les serveurs soient virtuels ou des machines physiques.
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10.3.5 Administration d’un système virtuel éteint
Les opérations d’administration du système d’une machine phy-

sique supposent que la machine soit en marche : en effet, la consul-
tation des paramètres du système, leur modification, les copies de
fichiers supposent que soient actifs un éditeur de texte, et quelques
commandes du système, et que l’on ait accès aux données persis-
tantes sur les disques durs, à tout le moins. Machine éteinte, rien
ne serait possible.

Il en va tout autrement pour une machine virtuelle : nous avons
vu qu’en fait elle était constituée de logiciels et de données héber-
gées sur un ordinateur physique. De ce fait, machine virtuelle arrê-
tée - et à condition bien sûr que la machine physique sous-jacente,
elle, ne soit pas arrêtée - il est possible, grâce au système d’exploi-
tation et aux logiciels de la machine physique d’accueil, d’accéder
aux paramètres de son système et à ses données. Si l’on en connaît
le format et l’organisation, on pourra effectuer les opérations d’ad-
ministration. Enfin, c’est plus vite dit que fait.

Trois ingénieurs de CA Technologies à Hyderabad en Inde et à
Datchet en Angleterre, Nishant Thorat, Arvind Raghavendran et
Nigel Groves, ont mis en œuvre une telle solution d’administration,
et ils ont écrit dans les Communications of the ACM 4, un article
qui la décrit. Ils ont tiré parti du fait que les principaux éditeurs
de systèmes de virtualisation se sont entendus sur des formats de
données publiés. La Distributed Management Task Force (DMTF) 5

a publié l’Open Virtualization Format, ou OVF, une spécification
adoptée par les principaux éditeurs (tels que Citrix, Microsoft et
VMware) et acceptée comme norme en août 2010 par l’American
National Standards Institute (ANSI) 6.

Les avantages d’une telle solution sont patents : à l’heure de l’in-
formatique en nuage, où les machines virtuelles se propagent aux
quatre coins de l’Internet et s’y reproduisent à qui mieux mieux,
leur appliquer « au vol » un plan de maintenance est bien plus diffi-
cile que pour un parc de machines physiques sagement rangées dans
les armoires d’un centre de données. Il est plus facile de travailler
sur l’image physique qui a servi à engendrer toutes ces machines

4 Communications of the ACM, Vol. 56 No. 4, Pages 75-81
5 http://dmtf.org/
6 http://ansi.org/

http://dmtf.org/
http://ansi.org/
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virtuelles, et qui est généralement stockée dans un endroit centralisé
bien identifié.

Nos auteurs ne manquent pas de souligner que cette solution
présente aussi des inconvénients (mineurs) : certaines opérations qui
nécessitent l’observation de la machine en marche ne sont pas pos-
sibles, et il reste du travail à faire pour que l’on puisse utiliser les
mêmes procédures d’administration sur les machines arrêtées et sur
les machines en marche.

10.3.6 Déplacer une machine virtuelle dans le réseau
Créer des machines virtuelles et les déplacer est facile et utile,

aussi les grands centres d’hébergement administrent-ils des dizaines
(voire des centaines) de milliers de machines virtuelles sur les mil-
liers de serveurs physiques, et au gré des besoins il faut les déplacer
d’un groupe de serveurs à un autre.

Pour organiser le réseau au sein du centre d’hébergement, on a
le choix entre la couche 2 (Ethernet) ou la couche 3 (IP).

Sur un réseau local Ethernet

Organiser le réseau du centre d’hébergement au niveau de la
couche 2 (Ethernet) est le plus facile à administrer... jusqu’à la
catastrophe.

— explosion du domaine de diffusion (broadcast) ;
— calcul laborieux de l’algorithme de l’arbre recouvrant (span-

ning tree), qui permet de déterminer une topologie sans
boucle dans le réseau ;

— explosion du nombre de Réseaux virtuels (VLAN) ;
— ou promiscuité dangereuse de niveau 2.

Dans un réseau IP avec du routage

Pour éviter les inconvénients de la couche 2, on peut organiser
le réseau du centre d’hébergement au niveau de la couche 3 (IP).
Là, plus de problème de promiscuité, on a un vrai réseau avec du
routage, ce qui, il faut le noter, demande de vraies compétences
réseau. Avec un réseau de couche 3, il est même possible d’étendre
l’espace de répartition des machines virtuelles à d’autres sites, géo-
graphiquement distants.

Cette solution de couche 3 a néanmoins des inconvénients :
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— lorsqu’une machine virtuelle se déplace d’un sous-réseau à
un autre, elle change d’adresse IP, ce qui est gênant pour de
nombreuses applications ;

— un réseau routé demande un niveau de compétence plus élevé
pour les administrateurs ;

— le routage consomme des ressources de calcul et d’infrastruc-
ture.

Combiner la couche 2 et la couche 3 ?

Le protocole VXLAN (Virtual eXtensible Local Area Network) 7

permet, comme son nom l’indique, de transporter de l’Ethernet
(couche 2) dans de l’IP (couche 3), ce qui vise à résoudre les diffi-
cultés évoquées aux deux sections précédentes, notamment lorsqu’il
s’agit de déplacer une machine virtuelle dans le réseau sans casser
toutes ses connexions réseau.

Les trames Ethernet sont encapsulées dans des datagrammes
IP. On leur ajoute une entête VNI (Virtual Network Identifier), ce
qui simule un « câble virtuel ». Le protocole de résolution d’adresses
(ARP) fonctionne sur un réseau multicast. VXLAN est à l’état de
draft à l’IETF.

10.4 Machines virtuelles applicatives
10.4.1 Un logiciel, une VM, un OS sur mesure, compilés

ensemble, en langage fonctionnel
Peut-on aller plus loin ? C’est ce que nous expliquent, dans un

article des Communications of the ACM [82] intitulé Unikernels :
The Rise of the Virtual Library Operating System, Anil Madha-
vapeddy et David J. Scott, qui travaillent sur le sujet depuis une
dizaine d’années, du côté de Cambridge (UK) et chez Citrix. Si on
n’est pas abonné aux CACM, on pourra lire en ligne une version
préliminaire de cet article 8.

Puisque l’on peut multiplier les machines virtuelles à volonté,
sans coût important, sans manipulation physique et sans délai, on

7 Cf. note 6 p. 261 et http://en.wikipedia.org/wiki/Virtual_Extensible_
LAN

8 http://anil.recoil.org/papers/2013-asplos-mirage.pdf

http://en.wikipedia.org/wiki/Virtual_Extensible_LAN
http://en.wikipedia.org/wiki/Virtual_Extensible_LAN
http://anil.recoil.org/papers/2013-asplos-mirage.pdf
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peut en profiter pour avoir une VM pour chaque logiciel utilisé,
pour chaque application métier par exemple.

Puisque chaque OS invité n’exécute qu’une seule applica-
tion, est-il nécessaire qu’il soit muni de tous les dispositifs ultra-
complexes destinés à garantir l’étanchéité des espaces de mémoire
et de données de chaque application, tout en leur permettant de
communiquer entre elles lorsqu’il le faut ? Ces fonctions d’isolation
et de communication seront assurées, bien plus efficacement et bien
plus simplement, par l’hyperviseur. Il est donc possible de les retirer
du système.

Puisqu’en outre cet OS n’invité n’aura pas à piloter toute une
variété de dispositifs physiques complexes et changeants, mais seule-
ment quelques périphériques simulés ultra-simplifiés et stables, il
sera allégé des fonctions correspondantes.

Et puisque seront éliminés la plupart des risques liés aux accès
directs au matériel et à la cohabitation de logiciels entre lesquels
il faut éviter les interférences, il ne sera plus utile d’avoir une dis-
tinction entre le mode superviseur et le mode utilisateur, ni entre
la mémoire du noyau et l’espace mémoire des utilisateurs.

Après toutes ces simplifications, les OS invités pourront se pré-
senter sous forme de simples bibliothèques de fonctions, qui seront
compilées et liées avec les logiciels d’application.

Et tant qu’à faire, on écrira toutes ces bibliothèques dans un lan-
gage fonctionnel de haut niveau, ce qui facilitera considérablement
le développement, et réduira le risque d’apparition de vulnérabilités
telles que les débordements de buffer, inévitables en programmation
de bas niveau, et toujours en tête du hit-parade des CERT.

En l’occurrence, le langage choisi par nos auteurs est OCaml 9,
un logiciel libre dont, soit dit en passant, l’équipe de conception et
de développement est née en France autour de Xavier Leroy.

10.4.2 Unikernel : avantages et inconvénients
La technologie qui consiste à compiler une application avec les

morceaux de système d’exploitation dont elle a besoin, et unique-
ment ceux-là, se nomme Unikernel ou library operating system (li-
bOS). Nos auteurs citent les premières avancées sur ce terrain à la
fin des années 1990, Exokernel [50] et Nemesis [77].

9 Cf. http://fr.wikipedia.org/wiki/Ocaml

http://fr.wikipedia.org/wiki/Ocaml
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Un des avantages majeurs du fait d’avoir l’application et les
fonctions système dans le même espace mémoire, sans séparation
des privilèges, consiste à éviter d’avoir à copier sans cesse des don-
nées de l’espace utilisateur à l’espace noyau et en sens inverse.
De plus, les applications ont accès directement aux dispositifs ma-
tériels, sans l’intermédiaire du noyau, ce qui améliore les perfor-
mances.

En contrepartie, expliquent nos auteurs, Nemesis et Exokernel
ont rencontré deux obstacles majeures : la difficulté d’isoler chaque
application de ses voisines, et la nécessité d’écrire des pilotes pour
chaque dispositif matériel nouveau. Or, justement, ces deux diffi-
cultés sont résolues par le recours aux machines virtuelles, puisque
c’est l’hyperviseur qui fournira les pilotes et qui assurera le cloi-
sonnement des VM. C’est ce dont ont tiré parti nos auteurs, en
profitant des progrès des techniques de virtualisation, et aussi de
ceux des processeurs, qui permettent aujourd’hui d’utliser ces tech-
niques avec des performances décentes.

10.4.3 MirageOS
Anil Madhavapeddy et David J. Scott ont baptisé leur système

MirageOS, un nom qui convient bien à un OS destiné à animer des
machines virtuelles dans les nuages.

La construction d’une application avec MirageOS commence
avec la création d’un graphe de dépendances pour identifier les
ressources nécessaires. En effet, une VM classique embarque un
système d’exploitation complet, sans oublier un serveur Web, un
système de gestion de bases de données et un système de gestion
de fenêtres, qui doivent chacun lire leurs fichiers de configuration
au démarrage pour s’initialiser, alors que seule une petite partie de
leurs fonctions seront utilisés par l’application utilisée. Le but d’un
Unikernel tel que MirageOS est d’élaguer ces processus pour ne
charger et configurer que les fonctions utiles. C’est d’ailleurs pour-
quoi les fichiers de configuration sont inclus d’emblée dans le graphe
de dépendances, et chargés lors de la compilation de l’application. Il
en va de même des parties utiles du noyau, disponibles sous formes
de bibliothèques dans les entrepôts de code source OCaml. Signa-
lons par exemple que la bibliothèque d’exécution d’OCaml com-
porte une pile TCP/IP complète, ce qui signifie que la machine
virtuelle MirageOS n’aura à demander les services réseau de l’hy-
perviseur qu’au niveau de la couche 2 (Ethernet).
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À la date de rédaction de l’article, MirageOS comporte une cen-
taine de bibliothèques (en open source) qui réalisent un large éven-
tail de fonctions attendues du noyau d’un système d’exploitation.
Son portage dans des systèmes commerciaux, tels que XenServer
de Citrix, est en cours.

Il est difficile de prévoir l’avenir de MirageOS : l’histoire de l’in-
formatique est pavée d’excellentes idées (et d’excellentes réalisa-
tions) supplantées par des systèmes bien moins bons. Une vision
aussi révolutionnaire aura à surmonter le conservatisme des entre-
prises et, surtout, de leurs ingénieurs. Mais il ne fait aucun doute
que les évolutions récentes de l’informatique, notamment en nuage,
sont un appel à ce type de solutions.

10.5 Informatique en nuage (Cloud Computing)
10.5.1 Une véritable innovation technique

L’informatique en nuage (en anglais Cloud Computing, traduit
infonuagique par les Canadiens francophones) est un service d’hé-
bergement informatique en réseau dont la première apparition fut
le lancement par Amazon de son offre Amazon Web Services (AWS)
en 2006. Il s’agissait alors pour Amazon de commercialiser la puis-
sance de calcul inutilisée des serveurs déployés de par le monde pour
son propre usage, et qui n’étaient utilisés qu’à 10% de leur capacité,
afin de pouvoir faire face aux points saisonnières, notamment lors
des fêtes de fin d’année..

L’idée d’une offre de services informatiques détachée, grâce au
réseau, des caractéristiques techniques de son implémentation avait
été formulée quelques années plus tôt, par exemple par des cher-
cheurs tels que Michel Volle 10.

L’originalité de l’informatique en nuage par rapport aux offres
traditionnelles d’hébergement de données, de sites Web ou de ser-
veurs de calcul repose sur les cinq caractéristiques suivantes :

— déploiement et arrêt des services à la demande, en self-
service, généralement par une interface Web, quasi instan-
tanément ;

— accès par réseau à haut débit ;

10 http://www.volle.com/ouvrages/e-conomie/table.htm,
http://www.volle.com/ouvrages/informatique/informatique1.pdf

http://www.volle.com/ouvrages/e-conomie/table.htm
http://www.volle.com/ouvrages/informatique/informatique1.pdf
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— mutualisation de ressources non localisées : infrastructures,
réseau, logiciel, stockage ;

— allocation et désallocation rapide des ressources ( « élasti-
cité ») ;

— facturation à la consommation, typiquement heure par
heure.

Cette souplesse est permise par la disponibilité de quatre tech-
nologies déjà bien connues, mais dont les performances ont accompli
récemment des progrès considérables : l’informatique distribuée, un
réseau à haut débit omniprésent, le système de noms de domaines
(DNS), et des plates-formes efficaces pour machines virtuelles :

— la nécessité d’un réseau rapide et omniprésent est évidente ;
— la disponibilité de systèmes efficaces de virtualisation, dont

une analyse détaillée sera donnée ci-dessous, elle permet de
déployer facilement, et même dans certains cas automati-
quement, de nouveaux serveurs à la demande, alors que s’il
s’agissait de machines physiques il y faudrait touteune logis-
tique de transport, de distribution d’énergie et d’infrastruc-
ture réseau ;

— l’usage de techniques perfectionnées de gestion du DNS
confère à cette répartition dans l’espace (physique et topo-
logique) la souplesse nécessaire ;

— une fois que l’on a déployé de nombreuses machines vir-
tuelles, les principes de l’informatique distribuée sont indis-
pensables pour les faire coopérer de façon cohérente 11.

10.5.2 Trois formes pour l’informatique en nuage
— IaaS (Infrastructure as a service) : le client se voit livrer une

machine (virtuelle) nue, c’est-à-dire sans système d’exploita-
tion installé, mais avec de l’espace disque et une ou plusieurs
interfaces réseau (virtuelles) ; il installe sur cette machine le
système et les logiciels de son choix, et fait son affaire des
mises à jour, de sécurité notamment ;

— Paas (Platform as a service) : le client reçoit une machine vir-
tuelle dotée du système d’exploitation qu’il aura choisi sur le
catalogue du fournisseur, ainsi que de quelques programmes
utilitaires (base de données, serveur Web par exemple) ; c’est

11 Le texte de référence inégalé sur les principes de l’informatique distribuée
reste le livre de Sir Charles Antony Richard Hoare [59].
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le fournisseur qui assurera les mises à jour des logiciels qu’il
aura installés, cependant que le client sera responsable de la
gestion des données et des logiciels d’application qu’il aura
installés lui-même ;

— Saas (Software as a service) : le client reçoit les droits d’accès
à un système entièrement configuré avec les logiciels choisis
sur le catalogue du fournisseur (par exemple paie, messa-
gerie, blog, wiki ou gestion financière), il n’a plus qu’à les
utiliser avec ses propres de données.

Grâce à la virtualisation des serveurs et du réseau, l’utilisateur
de services en nuage ne sait où se trouvent ni ses données, ni l’or-
dinateur qui les exploite, et d’ailleurs leur emplacement physique
peut changer à tout instant, même en cours de travail.

La plupart des services en réseau destinés au grand public ou
aux entreprises, tels que les Google Apps, Facebook, Dropbox, etc.,
fonctionnent en nuage : on ne sait où sont ni les données, ni les
ordinateurs qui les créent et qui les transforment.

10.5.3 Répartir les services en nuage grâce au DNS
Le système de noms de domaines (DNS) est une technologie

complexe, dont le principe est très simple(cf. p. 195), c’est ce-
lui de l’annuaire téléphonique : on cherche un nom, le DNS ré-
pond avec le « numéro IP » qui correspond au nom. Ainsi, au
nom www.laurentbloch.net correspond le numéro (on dit plutôt
l’adresse) IP 194.15.166.220.

Il est possible au propriétaire du nom www.laurentbloch.net
de configurer le serveur DNS qui fait autorité pour son domaine
laurentbloch.net de sorte qu’au lieu de répondre par une adresse
unique, il réponde par une collection d’adresses, qui correspondent
chacune à un serveur (physique ou virtuel) distinct. Ainsi il sera
possible de répartir les demandes d’accès au service entre les dif-
férents serveurs, ce qui lui procurera une sécurité accrue et une
répartition de la charge de travail.

10.6 Les threads
10.6.1 Séparer le fil d’exécution des ressources allouées

Le chapitre 3 a défini la notion de processus et décrit le com-
portement de tels objets ; le chapitre 4 a expliqué la gestion de
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la mémoire : en fait le processus et son espace-adresse, que nous
avons séparés pour la commodité de l’exposé, sont indissociables.
Le processus, disions-nous, est une entité active constituée d’un
programme en cours d’exécution et des ressources qui lui sont
nécessaires : temps de processeur, fichiers ouverts, espace de mé-
moire. Nous pouvons isoler conceptuellement l’aspect « programme
en cours d’exécution » en le désignant comme un fil, au sens de « fil
de la conversation » (en anglais thread). Le terme français « fil »
n’est pas très commode pour traduire thread parce que son pluriel
a une graphie ambiguë. L’équipe du projet Chorus a lancé le mot
« activité », qui ne convient guère (à mon avis), et nous utiliserons
thread (avec un peu de culpabilité). Les attributs qui relèvent des
threads, par opposition aux ressources, sont les suivants :

— le compteur ordinal (ou compteur de programme, eip sur
processeur Intel) ;

— l’état courant (actif, dormant, prêt ou terminé) ;
— les registres ;
— la pile.
Le processus possède en outre les ressources suivantes :
— espace adresse ;
— variables globales ;
— fichiers ouverts ;
— processus fils (fils comme filiation) ;
— interruptions en cours ou en attente ;
— données comptables.
Il résulte de cette définition que le processus est une entité com-

plexe, décrite par des tables nombreuses et encombrantes : table
des pages à plusieurs niveaux, table des fichiers ouverts, etc. Une
commutation de contexte entre processus implique notamment la
commutation d’espace adresse, donc la remise à zéro du TLB, ce
qui a un impact négatif lourd sur les performances de la pagination.
Le thread, comme nous allons le voir, est plus léger et maniable, au
prix d’une plus grande promiscuité avec les threads rattachés au
même processus.

10.6.2 Définition des threads
De ces considérations naquit l’idée qu’il serait bien d’avoir des

processus avec plusieurs fils d’exécution, ou, si l’on voit la question
sous l’angle opposé, d’avoir des « processus légers » qui n’auraient
pas besoin de recevoir toutes ces ressources neuves à leur lancement
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et qui se contenteraient de celles déjà possédées par leur processus
père, qu’ils partageraient avec leurs frères 12. Bref, cette démarche
conduit à la naissance d’une entité spéciale, un sous-processus en
quelque sorte, le thread :

— Le thread appartient à un processus.
— Un processus peut avoir plusieurs threads.
— Les threads d’un même processus sont en concurrence pour

l’accès au temps de processeur, elles s’exécutent en pseudo-
simultanéité comme nous l’avons vu pour les processus
concomitants.

— Un thread s’exécute dans l’espace adresse du processus au-
quel elle appartient : si un thread modifie un octet de la
mémoire, tous les threads de ce processus voient la modi-
fication immédiatement, comme s’ils l’avaient effectuée eux-
mêmes. Un thread peut notamment modifier la pile d’un de
ses frères !

— Tous les threads d’un processus partagent donc le même es-
pace adresse, et ils voient les mêmes fichiers ouverts : si un
thread lit des données dans un fichier séquentiel, ce qui fait
progresser le curseur du fichier (voir section 5.2.2) jusqu’à la
position qui suit les données juste lues, un autre thread qui
lira le même fichier obtiendra les données suivantes, sauf si
entre temps le fichier a été fermé et réouvert.

12 Incidemment, cette idée n’est pas entièrement inédite. À une époque reculée
(1968) IBM avait lancé un moniteur transactionnel nommé CICS (Customer
Information Control System) ; le travail d’un tel logiciel consistait à recevoir
des requêtes en provenance de milliers de terminaux, par exemple dans une
banque, à interroger ou mettre à jour la base de données, à donner la réponse
au terminal. Bien sûr il faut éviter que les mises à jour concomitantes ne
se télescopent et veiller à ce que les temps de réponse ne soient pas trop
catastrophiques. Pour des raisons de simplicité de portage sur des systèmes
différents, CICS était réalisé comme un unique gros processus (task dans
le language d’IBM) qui réalisait lui-même (avec une efficacité modeste) le
partage du temps et des ressources entre les différents travaux attachés aux
terminaux. Aux dernières nouvelles CICS est toujours au catalogue d’IBM,
des milliers de sociétés sont spécialisées en CICS, 30 millions de personnes
sont assises derrière des terminaux CICS, et cela continue à croître. CICS
avait été conçu dans les années 1960 comme une solution temporaire en
attendant que soit terminée la réalisation d’un SGBD plus ambitieux (IMS,
Information Management System), aujourd’hui largement délaissé et oublié
même si toujours au catalogue...
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10.6.3 Avantages procurés par les threads
Les threads ainsi définies offrent de nombreux avantages : par

exemple les navigateurs Web font du multi-threading, ce qui per-
met d’avoir plusieurs fenêtres ouvertes dans lesquelles se chargent
simultanément plusieurs pages de données, sans encourir le prix de
lancement de multiples processus ; on observe bien que la première
fenêtre s’ouvre beaucoup plus laborieusement que les suivantes. Et
des processus distincts ne feraient pas l’affaire, parce qu’ils ne pour-
raient pas partager de façon simple le cache mémoire et le cache
disque, ni les fichiers de signets. En outre, comme chaque thread
dispose de sa propre pile et de son propre état, s’il émet des de-
mandes d’entrée-sortie bloquantes (qui le mettent en attente), un
autre thread pourra prendre le contrôle sans que le programme ait
à prévoir quoi que ce soit de particulier, et la pseudo-simultanéité
sera assurée « naturellement » 13.

Le principal avantage reste la performance : créer et démarrer
un thread demande jusqu’à cent fois moins de temps que la création
d’un processus.

10.6.4 Implémentation des threads
Pour réaliser les threads, le concepteur de système a le choix

entre deux possibilités : en mode utilisateur ou en mode noyau.

Threads en mode utilisateur

Les threads sont des objets purement internes au processus, dont
le noyau n’a pas à être informé. Le processus gère totalement le
partage des ressources et la pseudo-simultanéité entre les threads.
Le système procure au processus une bibliothèque d’outils pour
assurer cette gestion, notamment pour implanter les piles et les
tables d’état des threads.

Threads en mode noyau

Le noyau gère les threads : création, ordonnancement, arrêt. Cela
consomme plus de ressources que les threads en mode utilisateur,

13 Dans son livre de système [21] Samia Bouzefrane observe que les threads
ou processus légers lancés dans le contexte d’un processus représentent une
bonne réalisation des moniteurs de Hoare [58].
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Figure 10.4 – Threads en mode noyau.

mais seule la gestion des threads en mode noyau permet le trai-
tement correct des appels système bloquants dans un thread (par
exemple une demande d’entrée-sortie), cas où il faut pouvoir ordon-
nancer un autre thread.

10.6.5 Inconvénients des threads
Les threads permettent une amélioration des performances de

certains logiciels, au prix d’une complexité plus grande pour le dé-
veloppeur. Le principal problème soulevé est celui des variables glo-
bales. Un programme d’une certaine taille, nous l’avons signalé au
chapitre 3 p. 52, est subdivisé en sous-programmes. Nous avons
évoqué les variables au chapitre 4 p. 111. Les variables locales d’un
sous-programme sont affectées sur la pile si elles sont petites (elles
tiennent dans un mot), sinon elles sont affectées sur le tas mais re-
pérées par un pointeur maintenu sur la pile. Comme nous avons dit
que chaque thread disposait de sa propre pile, il n’y a en principe
pas de risque qu’un thread accède à une variable locale appartenant
à une autre. Mais le problème est plus difficile à résoudre pour les
variables globales, visibles de tous les sous-programmes. Le pro-
blème est le même pour les accès aux fichiers. Dans ces deux cas,
les précautions à prendre sont à la charge du développeur.

D’autres soucis incombent à l’auteur du système : certains sous-
programmes de bibliothèque peuvent ne pas être réentrants, c’est-
à-dire que leur comportement sera erroné s’ils sont appelés par un
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programme alors que le précédent appel par un autre programme
n’est pas terminé. La cause la plus courante de ce type de problème
vient de ce que le sous-programme a des variables réservées « en
dur » dans son texte (au lieu d’être allouées dynamiquement sur le
tas) et que ces variables reflètent l’état du calcul du premier ap-
pel, ce qui sème la confusion lors du second. Pour être réentrant,
c’est-à-dire apte à être utilisé en une copie unique par deux ap-
pels concomitants, un programme doit posséder un texte invariable,
c’est-à-dire non susceptible d’être modifié lors de son exécution. La
désignation des objets externes qu’il manipule doit être extérieure
à son texte. En bref, tout ce qui est variable doit être dans les re-
gistres, sur la pile, ou atteint au moyen d’une indirection passant
par la pile ou par un registre (incidemment, sous Unix par exemple,
les arguments qu’il reçoit du programme appelant sont sur la pile).

Ainsi, le sous-programme de bibliothèque qui exécute un ap-
pel système pour allouer une zone de mémoire sur le tas (malloc
sous Unix) peut, lorsqu’il travaille dans un univers à fil d’exécu-
tion unique, laisser temporairement des tables de pointeurs dans
un état incohérent, puisque s’il est interrompu ce sera par un autre
processus, avec un autre espace adresse. Cette assertion cesse de te-
nir dans un univers à threads multiples... La solution consiste bien
sûr à n’écrire que du code réentrant pour les sous-programmes de
bibliothèque, mais le monde ne saurait être parfait...

10.7 Micro-noyaux
Dans les systèmes tels que ceux que nous avons évoqués jus-

qu’à présent, le noyau désigne la partie du système d’exploitation
dont la présence en mémoire réelle est indispensable et qui est com-
mune à tous les autres logiciels. Dans un système tel qu’Unix, cet
ensemble est monolithique (même si des Unix modernes tels que
Linux ont introduit des modules chargeables dynamiquement en
cours de fonctionnement) et il est devenu assez encombrant parce
qu’y ont été incorporées par commodité des fonctions assez variées.

L’idée de micro-noyau est née dans les années 1980 ; il s’agit
de réduire au minimum le contenu du noyau, et de placer en de-
hors, c’est-à-dire dans l’espace utilisateur, tout ce qui peut l’être.
Les avantages de cette démarche semblent évidents : l’interface du
micro-noyau sera plus simple que celle d’un macro-noyau, et per-
mettra de ce fait la construction d’un système plus modulaire ; il
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est possible d’implanter au-dessus du micro-noyau des serveurs qui
utilisent ses services pour exhiber le comportement, les caractéris-
tiques et la sémantique de systèmes divers, comme Unix, Windows,
MacOS etc., ce qui rejoint la notion de machine virtuelle et en fa-
cilite la réalisation ; en cas de panne d’un des serveurs, le système
continue à fonctionner, ce qui facilite grandement tous les travaux
de développement et de mise au point de système tout en augmen-
tant la tolérance aux pannes et la capacité de redémarrage à chaud.

L’idée était aussi que tout cela fonctionne en réseau : chaque
machine physique serait animée par un micro-noyau, et les serveurs
en mode utilisateur seraient répartis au gré des opportunités, ce qui
ouvre la voie à la construction d’architectures distribuées souples
et modifiables dynamiquement.

Un peu comme l’hyperviseur de VM/CMS, un micro-noyau ty-
pique fournit des services minimum d’accès au matériel : création
de threads, gestion minimale des interruptions, commutation de
contexte, verrouillage élémentaire de sections critiques, accès brut à
la mémoire et aux entrées-sorties, protection réciproque des threads.
Les fonctions plus raffinées (ordonnancement de processus, gestion
de mémoire virtuelle, système de fichiers, protocole de réseau...)
sont déléguées à des serveurs en espace utilisateur.

Les communications entre le micro-noyau et les serveurs sont
réalisées classiquement par passage de message, une technique qui
a l’avantage de pouvoir fonctionner aussi bien par le réseau que lo-
calement. Le message contient les informations nécessaires au trai-
tement d’un événement tel qu’une interruption, et il est déposé
dans une zone de mémoire connue comme boîte à lettres, où le
serveur concerné peut le récupérer. Ce mécanisme a l’avantage de
fournir un bon moyen d’abstraction et de séparation des fonctions,
il a aussi deux inconvénients : jusqu’à des développements récents
ses performances étaient médiocres, et dès lors que le système est
réparti sur plusieurs sites en réseau il est difficile de restituer ainsi
la sémantique d’un noyau Unix.

Les premiers micro-noyaux célèbres furent Mach, développé à
l’Université Carnegie-Mellon à Pittsburgh, Chorus, créé en France
en 1979 par une équipe de l’INRIA avec notamment Hubert Zim-
merman et Michel Gien, Amoeba créé à l’Université Libre d’Am-
sterdam par Andrew Tanenbaum.
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10.7.1 Chorus
Chorus est né en 1979 comme projet de recherche à l’INRIA près

de Paris. La société Chorus Systèmes a été créée en 1986 pour com-
mercialiser une nouvelle version de ce noyau (version 3), et elle a
été rachetée par Sun Microsystems en septembre 1997. Entre temps
le système Chorus a connu un succès assez modéré dans le monde
informatique proprement dit, mais beaucoup plus significatif dans
celui des constructeurs de matériel téléphonique, dont les autocom-
mutateurs sont en fait de vastes systèmes informatiques distribués
qui semblent faits pour les micro-noyaux.

Le noyau Chorus décompose la notion de processus selon les
deux axes que nous avions déjà mis en évidence à la section 10.6 :

— un axe « fil d’exécution », auquel correspondent des entités
appelées threads ;

— un axe « ressources allouées », notamment l’espace adresse,
auquel correspondent des entités appelées acteurs ; un ac-
teur peut avoir une ou plusieurs activités qui partagent ses
ressources, conformément au modèle de la section 10.6.

Chorus présente ses abstractions avec une terminologie qui té-
moigne, au moins dans les articles rédigés en français tels que
« UNIX et la répartition : retour à la simplicité originelle ? » [8]
dont les lignes qui suivent sont largement inspirées, d’un réel souci
d’énonciation des concepts dans un langage précis et expressif :

Site

Porte

Site

Message

Activité

Acteur

Activités

Acteur

Acteur

Figure 10.5 – Abstractions du micro-noyau Chorus

— l’acteur, unité d’allocation de ressources ;
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— l’activité (thread), unité d’utilisation de processeur ;
— le message, collection de données susceptible d’être envoyée

ou reçue par une porte ;
— la porte (port), adresse logique à laquelle des messages

peuvent être envoyée ;
— le site, qui désigne une machine éventuellement reliée à

d’autres sites par un système de communication (réseau ou
bus).

Process
Manager

Device
Manager

Process
Manager

Process
Manager

File
Manager

Device
Manager

Noyau Noyau Noyau

processus
processus

processus

processus

processus
processus processus

Interface noyau Interface noyau Interface noyau

Interface UNIXInterface UNIXInterface UNIX

Réseau (ou bus) de communication

High

Disk
Speed

Figure 10.6 – Serveur UNIX sur un groupe de sites Chorus

Au-dessus du noyau les créateurs de Chorus ont développé un
ensemble de serveurs destinés à constituer un sous-système Unix,
tel que représenté par la figure 10.6. Chaque type de ressource du
système (processus, fichier...) est géré par un serveur système dé-
dié. Les serveurs peuvent résider sur des sites différents : on voit que
Chorus, encore plus que Mach, a été conçu dans la perspective de
construction de systèmes répartis. Ce découpage du noyau Unix en
serveurs modulaires était très intéressant tant du point de vue du
génie logiciel (l’art de construire de grands systèmes informatiques)
que de celui de l’architecture. L’entreprise a (partielllement) achopé
sur la difficulté à restituer la sémantique du noyau Unix dans un
contexte non monolithique, ainsi que sur des problèmes de perfor-
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mances. Tant que l’on en reste à un site unique, Chorus implémente
des appels de procédures à distance (RPC, pour Remote Procedure
Call) légers, mais cette solution n’est disponible que si l’on renonce
à la répartition, et pour des processus en mode superviseur. La réa-
lisation efficace de communications inter-processus par passage de
messages ne viendra qu’après le rachat de Chorus par Sun, et ce
sera une autre équipe qui s’en acquittera.

Après le rachat par Sun, certains membres de l’équipe Chorus
créèrent en 2002 la société Jaluna, renommée en 2006 VirtualLogix.
Le code source de ChorusOS a été publié sous licence libre par Sun
et complété par Jaluna.

10.7.2 Mach
Mach est né en 1983 comme un projet de recherche de l’Univer-

sité Carnegie Mellon dont les idées majeures sont exprimées dans
une communication à la conférence USENIX de 1986, Mach : A
New Kernel Foundation for UNIX Development [4]. Ce projet a
suscité de grands espoirs, au point que la DARPA a à cette époque
réorienté vers lui une part importante des financements qui al-
laient auparavant au Computer Systems Research Group (CSRG)
de l’Université de Californie à Berkeley. Les objectifs de Mach sont
les suivants :

— développer le parallélisme tant pour le système que pour les
applications ;

— permettre l’usage d’espaces adresse vastes et éventuellement
répartis sur le réseau, avec des dispositifs souples de mémoire
partagée ;

— assurer un aspect transparent au réseau ;
— assurer la compatibilité avec les systèmes existants (Unix

BSD notamment) et la portabilité.
Le noyau Mach ignore la notion classique de processus, qu’il

désarticule selon les deux axes que nous avions déjà mis en évidence
à la section 10.6 :

— un axe « fil d’exécution », auquel correspondent des entités
appelées sans surprise threads ;

— un axe « ressources allouées », notamment l’espace adresse,
auquel correspondent des entités appelées tâches (tasks) ;
une tâche contient une ou plusieurs activités qui partagent
ses ressources, conformément au modèle de la section 10.6.
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Les abstractions de base du noyau Mach sont les suivantes (fi-
gure 10.7 :

— la tâche, unité d’allocation de ressources ;
— le thread, unité d’utilisation de processeur ;
— le flux (port), canal de communication unidirectionnel ;
— le message, collection de données susceptible d’être envoyée

ou reçue dans un flux ;
— l’objet de mémoire, unité interne de gestion de la mémoire.

Tâche
(task)

Site

Message

Flux (port)

(thread)
Activité

Activités

Tâche

Tâche

Figure 10.7 – Abstractions du micro-noyau Mach

Le projet Mach à l’Université Carnegie-Mellon s’est arrêté en
1994, mais il a une postérité réelle. L’Université d’Utah a repris
le flambeau pendant quelques années. Le projet GNU Hurd vise à
remplacer le noyau Unix par une collection de serveurs implantés
au-dessus d’un noyau Mach. Le système MacOS-X d’Apple, et dans
une certaine mesure le noyau de feu-Tru64 Unix de Compaq (ex-
Digital) sont des descendants plus ou moins légitimes du micro-
noyau Mach au-dessus duquel Apple et Compaq ont implanté des
systèmes Unix de sensibilité plutôt BSD.

10.7.3 Eumel, L3, L4
La série des systèmes Eumel, L3 et L4, développés à partir de

1977 par Jochen Liedtke à l’ Université de Bielefeld, puis à partir
de 1984 au GMD (Gesellschaft für Mathematik und Datenverarbei-
tung), à partir de 1996 au centre de recherche Thomas J. Watson
d’IBM et à partir de 1999 à l’Université de Karlsruhe, représente
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un des efforts les plus notables à la fois dans le domaine des micro-
noyaux et dans celui des domaines persistants (cf. section 5.4). La
disparition prématurée de Jochen Liedtke n’en a pas marqué la
fin, L4 et ses avatars Fiasco, L4Ka ::Pistachio et SeL4 poursuivent
l’aventure, avec quelques usages industriels.

Dans son article de 1995 On µ-Kernel Construction [78] Liedtke
pose les fondations de la « seconde génération » des micro-noyaux.
Il part de la constatation que certains pionniers ont été conduits à
réintégrer au noyau des fonctions qui en avaient été extraites vers le
mode utilisateur, essentiellement pour des raisons de performances.
Il examine donc les différents problèmes de performances rencontrés
et entreprend de leur trouver des solutions qui respectent le pro-
gramme initial des micro-noyaux : une architecture de système mo-
dulaire, des serveurs en mode utilisateur pour toutes les fonctions
dont l’appartenance au noyau n’est pas conceptuellement indispen-
sable, la possibilité d’implanter des stratégies variées de gestion du
système en mode utilisateur.

Le premier problème de performance examiné concerne le coût
de la commutation mode noyau – mode utilisateur, qui avec un
noyau Mach 3 sur un antique processeur Intel 486 à 50 MHz
consomme 900 cycles de processeur. Avec le noyau L3 Liedtke
abaisse ce coût à 180 cycles dans le cas le plus défavorable (3
adresses non résolues par le TLB, 10 fautes de cache). L3 implé-
mente les threads en mode noyau et les processus persistants, ceci
pour dire que c’est un noyau complet et non pas une simple ma-
quette dont la rapidité aurait pour contrepartie des fonctions rudi-
mentaires.

Liedtke examine ensuite la question de la commutation des es-
paces adresses. Comme nous l’avions noté à la section 4.4.5, cette
opération est beaucoup plus rapide sur les processeurs qui utilisent
un TLB étiqueté (tagged TLB) comme le MIPS R4000 ou l’Alpha,
que sur les processeurs comme le Pentium ou le Motorola PowerPC
qui doivent réinitialiser le TLB à chaque commutation d’espace
adresse. Pour les processeurs de cette dernière catégorie, Liedtke
propose d’utiliser les registres de segment, inutilisés par la plupart
des systèmes d’exploitation contemporains, pour simuler un TLB
étiqueté et éviter ainsi la réinitialisation du TLB. Le coût de la
commutation d’espace adresse descend ainsi à moins de 50 cycles,
ce qui autorise 100 000 commutations par seconde sans baisse de
performance insupportable.
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Le passage de messages, et de façon générale les communications
interprocessus, souvent incriminées, peuvent être accélérées par la
réaffectation de cadres de pages d’un espace-adresse à un autre, ce
qui évite la recopie physique de zones mémoire, un grande source de
gaspillage de cycles et de saturation du cache. Incidemment cette
technique est aussi de nature à améliorer les performances de l’accès
au réseau. Ces opérations doivent bien sûr être effectuées sous le
contrôle exclusif du noyau, ne serait-ce que pour des raisons de
sécurité.

Une des conclusions tirées par Liedtke de ses expériences, c’est
qu’un micro-noyau, pour être efficace, ne doit pas être conçu pour
être indépendant du matériel, mais doit au contraire exploiter au
mieux les caractéristiques du processeur auquel il est destiné. Ainsi,
le passage en mode noyau coûte un minimum de 156 cycles sur In-
tel 486, contre 20 cycles sur MIPS R2000, qui profite de son TLB
étiqueté et d’une zone mémoire réservée au noyau non affectée à
l’espace adresse de l’utilisateur : il est clair que la conception d’un
noyau pour ces deux processeurs aura à tenir compte de cette diffé-
rence. Pour le 486, Liedtke a été amené à organiser l’espace adresse
de manière à réduire le nombre d’accès au TLB par tous les moyens,
par exemple concentrer les données les plus cruciales du noyau en
une page.

10.7.4 Conclusion sur les micro-noyaux
Jusqu’au milieu des années 1990, aucune conférence informa-

tique peu ou prou orientée vers les systèmes ne pouvait avoir
lieu sans plusieurs communications consacrées aux micro-noyaux.
Il semblait évident à tout le monde que c’était la technologie du
lendemain. Aujourd’hui on n’en parle plus guère.

Les qualités intrinsèques du modèle du micro-noyau, son adap-
tation à des systèmes distribués et flexibles, sa capacité à fonction-
ner sur des plateformes de toutes dimensions, ainsi que les amé-
liorations apportées par les travaux de la seconde génération, ceci
combiné avec les attraits des systèmes persistants (cf. section 5.4),
me donnent à penser que cette technologie réapparaîtra, sans doute
combinée avec celle du code mobile à la Java.
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11.1 Naissance et essor d’une industrie
Depuis les années 1970 des efforts considérables ont été déployés

pour produire des ordinateurs accessibles économiquement et tech-
niquement à des personnes privées. L’ensemble des idées, des tech-
niques, des matériels et des logiciels mis en œuvre pour atteindre
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cet objectif a été appelé micro-informatique. Aujourd’hui le succès
en est si complet que l’on peut se demander s’il ne faudrait pas dire
informatique tout court : en effet les ordinateurs qui ne sont pas
destinés à un usage individuel sont plutôt l’exception, on les ap-
pelle généralement des serveurs. Depuis 1993 les micro-ordinateurs
offrent une puissance de calcul équivalente à celle des grands ordi-
nateurs traditionnels, et depuis le lancement en 2007 de l’iPhone
sous système iOS, aussitôt suivi par Android de Google, on peut
en dire autant des téléphones.

Si l’on a pu parler de « révolution micro-informatique », ce n’est
pas à cause d’un bouleversement de la technique architecturale, car
les micro-ordinateurs fonctionnent selon les mêmes principes que
les serveurs et respectent l’architecture de von Neumann avec une
orthodoxie plutôt plus stricte que ceux-ci. Les aspects techniques ré-
volutionnaires résident plutôt dans l’interface personne-ordinateur,
avec tout un déploiement d’interfaces graphiques et de périphé-
riques adaptés à des usages individuels. Par exemple, une vraie
nouveauté fut l’invention de la mémoire vidéo, qui associe par une
interface physique l’écran du micro-ordinateur et une zone mémoire
spéciale de telle sorte que toute modification de celle-ci s’affiche ins-
tantanément sur celui-là.

La micro-informatique fut en tout cas sans conteste une vraie
révolution économique et sociale puisqu’elle a fait d’une machine
isolée dans un sanctuaire soigneusement protégé et desservie par
une caste de professionnels au langage incompréhensible un bien
de consommation courante en vente dans les grands magasins et
utilisé par toutes les catégories sociales (à l’exclusion, comme l’a
souligné Michel Volle dans son livre E-conomie [133], des élites in-
tellectuelles, économiques et politiques françaises, qui manifestent
leur supériorité en proclamant ne jamais avoir touché un clavier ou
une souris).

La « révolution » manifeste un signe avant-coureur dès no-
vembre 1960, avec la livraison du premier PDP-1 de Digital Equip-
ment, un ordinateur individuel très bon marché pour l’époque :
120 000 dollars ! La firme Digital Equipment avait été fondée peu
de temps auparavant par l’ingénieur Ken Olsen et allait contribuer
de façon notable à l’évolution de l’industrie informatique en lan-
çant l’idée de mini-ordinateur, une machine plus simple et moins
chère que les grands systèmes de l’époque, bien que réalisée en lo-
gique discrète (le microprocesseur n’existe pas encore). Les gammes
PDP successives allaient permettre bien des innovations, notam-
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ment le développement du contrôle informatique de processus in-
dustriels et la création du système Unix. DEC sera pendant les
années 1980 le second constructeur informatique mondial derrière
IBM et emploiera alors 110 000 personnes dans le monde entier.
Ken Olsen ignorera deux phénomènes importants : la naissance du
micro-ordinateur et le succès d’Unix, alors que sa société avait été
associée à leur genèse. DEC périclitera dans les années 1990, sera ra-
cheté par Compaq, lui-même racheté en 2001 par Hewlett-Packard,
et sa dernière gamme de processeurs, Alpha, sera cédée à Intel et
abandonnée malgré des qualités techniques éminentes.

En novembre 1971 se produit l’événement qui va permettre la
naissance de la micro-informatique : Intel produit le premier mi-
croprocesseur, le 4004. En effet, l’unité centrale du PDP-1 (sans
parler de celle d’un gros ordinateur de l’époque) comporte de nom-
breux éléments électroniques et électriques reliés entre eux par des
fils, un assemblage fait à la main par des techniciens hautement
qualifiés, et de ce fait très cher. Le microprocesseur rassemble en
un seul élément (une puce, chip en anglais) ces nombreux circuits
indépendants, et il est entièrement fabriqué par des machines auto-
matiques, ce qui permet des prix de vente compris entre quelques
Euros et quelques centaines d’Euros.

Dès 1972 les Français André Truong Trong Thi et François Ger-
nelle conçoivent le micro-ordinateur Micral autour du microproces-
seur Intel 8008 1. En janvier 1975, MITS (Model Instrumentation
Telemetry Systems, fondée à Albuquerque, au Nouveau-Mexique,
par Ed Roberts) lance l’Altair 8800, un micro-ordinateur basé sur
l’Intel 8080 et vendu en kit par correspondance pour 400 dollars.

Pour simplifier l’architecture, l’Altair possède un circuit unique
nommé « bus » pour faire circuler les données entre le processeur, la
mémoire centrale et les organes périphériques. Cette idée vient des
PDP. Le connecteur du bus de l’Altair a 100 broches et se répand
dans l’industrie sous le nom de bus S-100.

L’Altair dispose d’un traducteur du langage BASIC écrit par
Bill Gates et Paul Allen, dont la société de fait « Micro-soft » ap-
paraît ainsi en 1975.

Steve Wozniak et Steve Jobs fondent Apple le 1er avril 1976. Le
1er juillet, la carte Apple I est mise en vente au prix de 666,66 dol-

1 Sur toute cette aventure de la naissance du micro-ordinateur, et plus parti-
culièrement sur l’épisode français, on consultera avec profit le livre d’Henri
Lilen [79].
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lars. L’année suivante sort l’Apple II, basé sur le processeur Rock-
well 6502 (initialement créé par MOS Technology) et qui comporte
l’autre innovation technique importante de la micro-informatique
après le microprocesseur : une mémoire vidéo directement comman-
dée par le processeur et reliée à un moniteur à balayage analogue
à un écran de télévision. Tous les éléments visuels sont enregistrés
dans la mémoire vidéo, ce qui permet des affichages à l’écran très
rapides, indispensables aux programmes graphiques. Le boîtier de
l’Apple II comporte un fond de panier avec des connecteurs raccor-
dés au bus dans lesquels viennent s’enficher les cartes de mémoire ou
de contrôleurs de périphériques. Cette architecture matérielle fera
la versatilité, la souplesse et le succès de la micro-informatique.

D’autres constructeurs lancent des micros basés sur le 6502 :
Commodore, Oric, Atari, Acorn, tandis que Tandy Radio Shack
utilise le Zilog Z80 pour son TRS-80.

Parallèlement au développement du matériel apparaît un des
premiers systèmes d’exploitation capable de fonctionner sur plu-
sieurs types de micros : CP/M (pour Control Program/Microcom-
puters) écrit par Gary Kildall dès 1973. Nous en reparlerons à la
section suivante.

En 1979, un étudiant du MIT et de Harvard du nom de Dan
Bricklin invente un nouveau type de logiciel, le tableur (le sien s’ap-
pelle Visicalc). Ce programme affiche sur l’écran une feuille de cal-
cul avec des lignes et des colonnes et des nombres dans les cases.
Le programme permet de dire que telle case doit recevoir la somme
des nombres contenus dans telle colonne, par exemple. L’intérêt du
tableur, c’est que si l’on modifie un des nombres de la colonne, la
case qui contient la somme est automatiquement modifiée, ce qui
permet d’examiner rapidement toute une série d’hypothèses, pour
préparer un budget par exemple. L’invention du tableur permet
l’arrivée du micro dans le monde de la gestion.

Le 12 août 1981 IBM lance son micro, le PC, basé sur le 8088
d’Intel et le système MS-DOS de Microsoft, et doté d’un fond de
panier et d’un bus similaires à ceux de l’Apple II. Cet événement
fait sortir la micro-informatique du cercle des amateurs et des pré-
curseurs vers le monde industriel et commercial, et permet à IBM
de dominer ce nouveau marché dès 1983.

Mais des innovations techniques, cette fois dans le domaine du
logiciel, vont encore modifier la face de la micro-informatique. Elles
sont issues du PARC (Palo Alto Research Center) de Xerox. Steve
Jobs visite le PARC en 1979, Bill Gates en 1980, ils y découvrent
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une technique révolutionnaire de communication entre l’homme et
la machine. En 1981 Xerox lance le 8010 Star, premier système à
offrir une interface à fenêtres, icônes, menus et souris. Apple lance
en 1983 Lisa, un micro qui utilise ces techniques. Ce sont des échecs
parce que Star et Lisa sont trop chères, mais en 1984 sort le Ma-
cintosh, version améliorée et moins chère de Lisa (2495 dollars).
Le « Mac » présente sur son écran une métaphore du bureau ; des
« icônes » figurent des dossiers, que l’on peut ouvrir ou fermer en
« cliquant » dessus avec un dispositif de pointage, la souris. Dans
les dossiers, des documents, qui lorsque l’on clique dessus s’ouvrent
pour s’afficher dans des « fenêtres » qui ressemblent à des pages de
papier posées sur le « bureau ». Cette interface graphique, fruit de
recherches en psychologie et en informatique entreprises par Alan
Kay à l’Université d’Utah en 1970 et poursuivies au PARC, va per-
mettre aux « personnes ordinaires » de se servir d’un ordinateur
sans trop souffrir.

Ce succès est complété par la sortie en 1985 d’une imprimante
à laser de petite taille (le modèle 3800 d’IBM, sorti en 1976, pèse
plusieurs centaines de kilos et coûte des centaines de milliers de dol-
lars) dotée d’un langage de programmation graphique, PostScript,
et du premier réseau de micros, deux innovations inspirées des tra-
vaux du PARC. Ces nouveautés qui mettent à la portée de presque
tous des possibilités naguère réservées aux grandes entreprises et
aux universités riches donnent à Apple plus de dix ans d’avance
technique sur les ordinateurs d’IBM.

Si l’IBM PC est techniquement peu innovant, il a d’autres qua-
lités : il est construit d’éléments standard en vente dans toutes les
bonnes boutiques d’électronique et les spécifications de son archi-
tecture sont publiées dans une brochure. Dès juin 1982 Columbia
Data Products fabrique un « clone » de PC qui marque les débuts
d’une immense industrie.

L’essor prodigieux du micro stimule l’industrie du logiciel, à
moins que ce ne soit l’inverse. Ce sont le traitement de texte, les
tableurs et les bases de données qui assurent l’essentiel de l’activité,
sans oublier les jeux.

IBM et Microsoft cherchent à combler leur retard sur l’inter-
face homme-machine du Mac, mais ils divergent sur la méthode et,
en 1987, IBM lance OS/2 et Microsoft, Windows 2. De ce schisme
date la fin de la suprématie d’IBM sur le marché du PC, dominé
désormais par le couple Intel-Microsoft, qui ont le monopole res-
pectivement du processeur et du système d’exploitation.
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Au milieu des années 1990, le marché des matériels micro-
informatiques représente avec près de 100 milliards de dollars 60%
du marché du matériel informatique. Les micros à base de proces-
seur Intel représentent plus de 90% du parc, ils ont désormais des
performances comparables à celles des stations de travail techniques
pour un prix bien inférieur. Les pays du sud-est asiatique produisent
une grande proportion des matériels les moins chers. Les interfaces
« à fenêtres » sont d’un usage général.

En ce qui concerne l’équipement des micro-ordinateurs, la ca-
pacité de la mémoire centrale et des disques ne cesse de croître.
Les lecteurs de CD-ROM, les modems et les cartes vidéo aptes au
multimédia se généralisent.

Le logiciel micro-informatique est une activité dominée par Mi-
crosoft, mais cette hégémonie suscite procès et réactions, comme le
développement des logiciels libres, avec notamment des Unix libres
pour micro-ordinateurs (Linux, FreeBSD).

11.2 Quel système pour les micro-ordinateurs ?
Le principal problème à résoudre pour faire fonctionner les pre-

miers micro-ordinateurs était la faible quantité de mémoire dis-
ponible. L’auteur de ces lignes a connu ses premières expériences
personnelles en 1968 avec un Olivetti Programa 101, puis durant
les années 1970 avec un Wang 2200 (des Wang Laboratories, créés
par An Wang en 1951). Ce modèle lancé en 1972 disposait de 4K
(4096 octets) de mémoire et d’un système d’exploitation qui était
en fait une machine virtuelle destinée au langage BASIC, enregis-
trée en ROM (Read-Only Memory, c’est-à-dire une mémoire in-
corporée au matériel de telle sorte que le contenu en soit inalté-
rable). Les supports de données externes étaient des cassettes pour
magnétophone portable (les disquettes de 8 pouces apparaîtraient
plus tard). Avec de telles caractéristiques, les créateurs de micro-
ordinateurs ont dû réinventer toutes les techniques de l’informa-
tique classique de vingt ans auparavant, et il n’était pas question
d’envisager des solutions luxueuses telles que la mémoire virtuelle
ou la multi-programmation. Par contre ces concepteurs venaient
souvent du monde de l’instrumentation électronique et ils avaient
fréquemment des idées très ingénieuses pour traiter les interrup-
tions et faire circuler les données, ce qui eut pour conséquence que
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ces petits ordinateurs furent rapidement plus agiles que les gros en
matière de réseau et de télécommunications.

11.2.1 Élégie pour CP/M
Nous avons déjà signalé dans les chapitres précédents que si les

premiers systèmes d’exploitation, et certains qui sont encore en acti-
vité, furent écrits en assembleur pour des raisons de performance et
de réduction de l’encombrement mémoire, assez tôt l’idée apparut
de les écrire en langage évolué afin d’accélérer le développement, de
faciliter la maintenance et d’améliorer l’intelligibilité du code pro-
duit. Le précurseur en ce domaine fut le constructeur Burroughs
avec son modèle B 5000, sorti en 1962 avec un système écrit en
Algol 60, suivi de Multics écrit en PL/1 et d’Unix en langage C. Le
monde micro-informatique allait connaître très tôt une évolution
similaire, au destin avorté.

Dès 1972, un expert indépendant sous contrat pour Intel, Gary
Kildall, créait un langage évolué pour le microprocesseur 8008, bap-
tisé PL/M ; en fait, Kildall effectuait son service militaire en tant
qu’enseignant d’informatique à la United States Naval Postgraduate
School de Monterey en Californie, il avait acheté pour 25 dollars
un processeur Intel 4004, et il avait commencé à programmer cet
appareil assez bizarre. Très vite il entra en contact avec l’équipe
Intel, basée à quelques kilomètres, et il travailla avec eux pendant
son jour de congé hebdomadaire. Comme rétribution de ce travail
il reçut un système de développement complet (c’est-à-dire tout ce
qu’il faut autour du processeur pour le programmer, soit les compo-
sants d’un micro-ordinateur, objet non encore inventé à l’époque),
d’abord pour le 8008, puis pour le tout nouveau 8080.

PL/M était un langage d’assez bas niveau qui empruntait ses
traits morphologiques et syntaxiques à PL/1 et Algol. Pour déve-
lopper le compilateur PL/M, Kildall créa un système d’exploitation,
CP/M : faire les choses dans cet ordre fut sans doute un exemple
unique ! PL/M devint pour une vingtaine d’années le langage de
programmation standard chez Intel.

À peu près à la même époque IBM avait inventé la disquette
pour son usage interne 2. Assez vite l’ingénieur à l’origine de cette
invention, Alan Shugart, créa une entreprise pour commercialiser

2 Je me rappelle l’avoir vu apparaître dans la console d’un IBM 370/155, où
elle servait à charger le micro-code (voir section 9.4.7 p. 325).
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la chose, avec grand succès. Kildall eut l’idée d’utiliser ce nouveau
type de périphérique comme unité de stockage de données pour
micro-ordinateur et d’adapter CP/M en conséquence.

La sortie commerciale de CP/M eut lieu en 1975. Le premier
fabricant d’ordinateurs à l’utiliser fut IMSAI. CP/M connut un
succès important et rapide. Bientôt il supporta les disques durs. La
société de Kildall prit le nom de Digital Research.

CP/M était un système mono-utilisateur à mémoire réelle, sans
mémoire virtuelle. Les parties du système qui dépendaient du ma-
tériel étaient soigneusement isolées, et les caractéristiques des élé-
ments matériels répertoriées dans des tables, de telle sorte que
l’adaptation à un nouveau modèle de processeur ou de disque puisse
être réalisée aussi simplement que possible. Cette organisation per-
mit à CP/M d’être adapté avec succès pour les microprocesseurs
les plus répandus de cette époque, à mots de 8 bits ou de 16 bits,
tels que le Zilog Z80, l’Intel 8086 ou le Motorola 68000.

L’architecture de CP/M comporte trois sous-systèmes : CCP
(Console Command Processor) qui régit les interactions avec l’uti-
lisateur par l’intermédiaire d’un interpréteur de commandes (on ne
rêve pas encore d’interfaces graphiques) ; BDOS (Basic Disk Ope-
rating System) qui gère les disques et le système de fichiers ; BIOS
(Basic Input/Output System) contient les pilotes de périphériques
et gère les aspects matériels de bas niveau, spécifiques d’une ma-
chine particulière. Typiquement le BIOS n’est pas fourni par Digital
Research mais par le fabricant de l’ordinateur, ce qui annonce la
pratique toujours en vigueur pour les PC à base de processeur Intel
(voir section 9.4.7 et 11.2.2) ; il fournit une couche d’abstraction du
système par rapport au matériel.

CP/M procure un outil supplémentaire d’abstraction des dis-
positifs matériels, avec la notion d’unité logique, qui permet de
dissimuler à l’utilisateur les détails techniques trop horribles pris
en charge par le système.

Digital Research produisit une évolution de CP/M nommée
MP/M, dotée d’un noyau multi-tâche multi-utilisateur, avec des
possibilités de temps partagé.

À la fin des années 1970 Digital Research fut confronté à un di-
lemme : si PL/M restait un langage bien adapté pour l’écriture du
système d’exploitation, il fallait choisir un langage de développe-
ment pour les logiciels d’application, BASIC n’étant pas approprié.
L’hésitation était entre Pascal, un langage prisé des universitaires
mais dépourvu de certaines caractéristiques nécessaires à la pro-



Quel système pour les micro-ordinateurs ? 373

grammation de grands logiciels (essentiellement la possibilité de
construire de grands programmes à partir de modules compilés sé-
parément, ainsi que des fonctions de traitement de fichiers et de
chaînes de caractères), et PL/1, le langage qu’IBM essayait, sans
grand succès d’ailleurs, de promouvoir auprès de ses clients.

PL/1 était un langage dérivé d’Algol et doté d’une grande ri-
chesse fonctionnelle, trop grande d’ailleurs, ce qui rendait la réali-
sation de compilateurs difficile et incitait les programmeurs inex-
périmentés à produire des logiciels dépourvus de la sobriété qui fait
les programmes robustes. Pour pallier la difficulté d’adapter le lan-
gage à de petits ordinateurs, le comité de normalisation de PL/1
avait défini un sous ensemble plus raisonnable, PL/1 Subset G, qui
était un excellent langage. C’est pour PL/1 Subset G que Digital
Research commença en 1978 à développer un compilateur, qui fut
prêt en 1980. La société avait signé son arrêt de mort.

En 1981, IBM lançait son propre micro-ordinateur, le PC. Il
était construit autour du processeur Intel 8088, une version dégra-
dée du 8086 : le 8086 avait des mots de 16 bits et un bus de données
d’une largeur de 16 bits, le 8088 des mots de 16 bits mais un bus
de 8 bits. Les stratèges de la compagnie ont certainement compris
que CP/M, doté d’un vrai langage de développement, PL/1 Subset
G, et qui évoluait vers un système d’exploitation multi-utilisateurs,
MP/M, représentait à terme une concurrence dangereuse pour les
« vrais » ordinateurs qui constituaient leur cheval de bataille. De
surcroît, CP/M pouvait « tourner » sur plusieurs types de proces-
seurs, ce qui donnait à ses utilisateurs la liberté du choix de leur
fournisseur de matériel, une caractéristique non souhaitée par le
département marketing d’IBM. C’est pourquoi le PC n’a pas été
lancé avec CP/M, qui lui aurait parfaitement convenu, mais avec
un système bien plus rudimentaire et dépourvu de langage de dé-
veloppement décent, MS/DOS produit par Microsoft... La légende
racontera une histoire de rendez-vous manqué.

11.2.2 De MS-DOS à Windows
Les années IBM et MS-DOS

Le PC IBM naît en 1981 avec un processeur Intel 8088 et le
système PC-DOS de Microsoft, qui est en fait une copie plus ou
moins autorisée et incomplète de CP/M qui aurait été dépouillé de
plusieurs fonctions importantes, comme l’allocation dynamique de
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mémoire, le partage de fichiers, la commutation de processus et la
gestion de périphériques (voir à ce sujet la rubrique nécrologique
de Gary Kildall par John Wharton Gary Kildall, Industry Pioneer,
Dead at 52, [134]). La mémoire adressable ne peut pas dépasser 640
Ko. La notoriété d’IBM apporte au micro-ordinateur une respecta-
bilité qui va permettre son entrée dans les entreprises, et va aussi
attirer les éditeurs de logiciels.

Le PC a une caractéristique surprenante de la part d’IBM :
toutes ses caractéristiques techniques internes et externes sont pu-
bliées dans une documentation librement accessible à qui veut bien
l’acheter. Ceci permet très rapidement la réalisation de copies du
PC. Si PC-DOS est le système d’exploitation réservé au PC d’IBM,
les producteurs de clones peuvent les équiper de son sosie MS-DOS,
parfaitement semblable.

Le BIOS du PC ne réalise pas, contrairement à celui de son
modèle CP/M, une véritable abstraction du matériel, il dépend
étroitement des caractéristiques du processeur, mais il constitue
néanmoins une interface qui va faciliter le travail des cloneurs,
en leur permettant par exemple de contourner les brevets d’IBM
sur le matériel. Le BIOS permet aussi d’accueillir toutes sortes de
cartes d’extension, celles-ci peuvent comporter de la mémoire ROM
(Read Only Memory, au contenu non-volatil et figé une fois pour
toutes) qui contient des extensions au BIOS, chargées dynamique-
ment au démarrage ; ainsi de nouvelles fonctions peuvent être prises
en compte, ce qui sera particulièrement mis à profit par les créateurs
de cartes graphiques.

Durant l’année 1982 Intel lance le processeur 80286, à mots de
16 bits, bus de données de 16 bits et adresses de 24 bits, soit une ca-
pacité d’adressage de 16 777 216 octets. Ce processeur introduit des
caractéristiques nouvelles dans la famille Intel : à côté d’un mode de
fonctionnement compatible avec le 8086, dit mode réel, il est doté
d’un mode inspiré de Multics, le mode protégé. Le mode protégé
comporte la gestion de registres de segments pour une mémoire
virtuelle segmentée à la Multics et une protection par anneaux,
mais il lui manque l’accès à la mémoire auxiliaire sur disque par
adressage de segment. De toutes les façons les systèmes MS-DOS
et Windows n’ont pas utilisé et n’utilisent toujours pas ces possi-
bilités du matériel. Pire, ils resteront longtemps (en fait jusqu’au
lancement commercial de Windows NT en 1993) fidèles au mode
réel afin de conserver la compatibilité avec les vieux logiciels MS-
DOS. Le 80286 et ses successeurs possèdent un dispositif qui permet
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le lancement de plusieurs machines virtuelles 8086 en mode réel, et
c’est cette caractéristique qui fut la plus utilisée par les systèmes
Windows jusqu’à la fin du vingtième siècle, sinon après.

En 1984 IBM lance le PC/AT sur la base d’un 80286 exploité
en mode réel et avec MS-DOS qui ne sait toujours utiliser que le
premier mébioctet de mémoire. Cette machine connut néanmoins
un grand succès, mais dont IBM ne fut pas le seul bénéficiaire parce
que l’activité des fabricants de clones connut alors un grand essor.

Le schisme entre OS/2 et Windows

En 1987 IBM, désireux de reprendre le contrôle du marché du
PC, lança le PS/2, doté d’une architecture fermée protégée par des
brevets, d’un nouveau bus baptisé MCA incompatible avec celui
de l’AT, et d’un nouveau système d’exploitation, OS/2 conçu en
collaboration avec Microsoft. Le processeur était toujours le 80286
vieillissant, voire le 8086 pour les modèles d’entrée de gamme. Mal-
gré d’indéniables qualités techniques qui corrigeaient beaucoup des
défauts de l’architecture des PC sous MS-DOS, cette tentative de
reprise en main fut un échec total qui aboutit à reléguer IBM dans
une position subalterne et marginale sur le marché qu’il avait créé.
Plus que le choix de processeurs dépassés face au nouveau modèle
d’Intel, le 386 qui sortait au même moment, l’échec de la firme
d’Armonk résulta d’une révolte des industriels du PC bien décidés
à conserver leur indépendance, révolte soutenue par la clientèle et
surtout par Microsoft et Intel, qui voyaient là une occasion de sor-
tir de l’ombre d’IBM pour jouer les premiers rôles. Microsoft avait
discrètement préparé une alternative à OS/2, Windows2 qui sortit
opportunément à ce moment. C’est le début de l’ascension de la
firme de Redmond.

Windows 2 et 3 n’était qu’une surcouche cosmétique au-dessus
de MS-DOS. Ce système à fenêtres, icônes et menus déroulants re-
posait sur l’utilisation des machines virtuelles de l’Intel 386 en mode
réel, qui pouvaient être multiples, ce qui permettait de franchir la
barrière de mémoire qui limitait MS-DOS. L’interface graphique
faisait pâle figure à côté de celle du Macintosh, mais elle allait en-
clencher la conquête du grand public par les logiciels de Microsoft.

Les systèmes d’interfaces à fenêtres, que ce soit Windows,
MacOS ou le système de fenêtrage X qui fonctionne comme une sur-
couche au-dessus d’Unix, introduisent un nouveau style de program-
mation, la programmation par événements. Le programme principal
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exécute une boucle infinie qui attend un événement en provenance
d’une fenêtre (clic de souris, déplacement de la souris, frappe d’une
touche au clavier). Chaque événement est analysé et provoque le
déclenchement du sous-programme chargé d’effectuer l’action ap-
propriée.

Windows NT et 95

Windows NT (lancé donc en 1993) et Windows 95 (daté comme
son nom l’indique de 1995) allaient enfin utiliser le mode protégé du
processeur avec un adressage sur 32 bits et l’usage de bibliothèques
de fonctions chargées dynamiquement (DLL, Dynamic Link Libra-
ries) analogues aux bibliothèques partagées d’Unix. Mais Windows
95, destiné au grand public, se devait de conserver la compatibilité
avec les anciens logiciels, surtout ceux destinés aux jeux, et de ce
fait conservait un soubassement MS-DOS.

Faiblesses de Windows 95

Windows 95 disposait de la mémoire virtuelle, d’une gestion
de processus et de possibilités de multiprogrammation, mais les
bénéfices de cette modernisation étaient obérés par la présence d’un
important héritage de code 16 bits dans le noyau et par le partage
sans protection d’une partie de l’espace mémoire entre le noyau et
tous les processus.

En outre, si Windows 95 était préemptif, son noyau n’était pas
réentrant : être réentrant est une qualité statique, lexicale d’un pro-
gramme, cela signifie que si un processus ou une activité (thread)
qui l’exécute est interrompu(e) au milieu de cette exécution, il ne
reste dans le texte du programme aucune trace de cette exécution
inachevée et un autre processus (ou un autre thread) peut exécu-
ter la même copie en mémoire de ce même programme à partir
d’une autre instruction sans qu’il soit pollué par les exécutions pré-
cédentes ; en d’autres termes le texte du programme lui-même ne
contient aucune information qui dépende de l’exécution d’un pro-
cessus particulier ou d’un thread particulière, comme par exemple
une variable définie statiquement dans le code (cf. p. 356). Si Win-
dows 95 est préemptif, cela signifie qu’un processus (ou un thread)
peut être interrompu(e) à n’importe quel instant au profit d’un(e)
autre. Si le noyau n’est pas réentrant, cela signifie que le processus
interrompu peut avoir laissé une structure de données du noyau
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dans un état incohérent qui provoquera un comportement impré-
visible du processus nouvellement ordonnancé. Bref, un système
préemptif à noyau non réentrant est sujet aux pannes inexplicables
de type blocage ou arrêt brutal.

Cette absence de sûreté réentrante du noyau Windows 95 pré-
senterait de tels risques si le fonctionnement préemptif du système
était effectivement utilisé que la plupart des logiciels raisonnables
recouraient à des artifices pour acquérir et conserver le contrôle ex-
clusif du processeur pendant leurs phases d’activité. Le procédé le
plus populaire consistait à obtenir, en entrant dans le mode noyau,
un verrou de contrôle exclusif qui contrôlait l’accès à pratiquement
tout le système. La méthode était radicale, mais elle faisait perdre
l’essentiel de l’intérêt de la multiprogrammation.

Atouts de Windows NT

Microsoft destinait Windows NT au marché professionnel, et
afin de satisfaire les exigences supposées de cette clientèle avait
recruté chez Digital Equipment David Cutler et Mark Lucovsky.
Cutler avait été l’auteur du système RSX-11M des PDP-11, puis
avec Lucovsky un des architectes du système VMS du VAX. La
conception de Windows NT commença en octobre 1988.

Windows NT visait la portabilité ; Cutler et Lucovsky pensaient
que le seul moyen d’atteindre cet objectif était de développer le sys-
tème simultanément pour deux architectures matérielles différentes.
Ils commencèrent par la version destinée aux processeurs RISC de
MIPS, dont personne ne se souciait chez Microsoft, afin d’acquérir
la certitude que la version pour Intel x86 serait vraiment portable.

Toujours afin d’assurer la portabilité et l’évolutivité de leur sys-
tème, Cutler et Lucovsky s’interdirent d’incorporer au noyau la sé-
mantique de tel ou tel système ; ils décidèrent de développer plutôt
un noyau réduit aux mécanismes de base et doté d’une interface de
programmation (API) claire au-dessus de laquelle ils implantèrent
trois sous-systèmes qui implémentaient les sémantiques respecti-
vement des systèmes POSIX, OS/2 et Windows. Cet discipline se
révéla judicieuse lorsque Microsoft décida d’abandonner définitive-
ment OS/2 et de développer Windows de façon totalement indé-
pendante.

Si l’on dresse la liste des dispositifs qui figurent dans Windows
NT et sont absents de Windows 95 et même Windows 98, on trouve
tout ce qui touche à la sécurité, le support des multi-processeurs, un
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système de fichiers plus perfectionné. Le caractère préemptif et la
gestion de mémoire virtuelle de NT sont dépourvus des compromis
qui en font perdre une partie du bénéfice à 95 et 98.

Insuccès de Windows NT

Malgré ces qualités indéniables, le lancement de Windows NT
fut un échec relatif. D’abord, ce nouveau système ne garantissait
pas la compatibilité avec les vieux programmes MS-DOS. Ensuite
il était cher.

Et puis Windows NT était entaché de compromis douteux. Par
exemple, parmi ses dispositifs de sécurité figure un vrai système
d’enregistrement des utilisateurs autorisés et de contrôle des mots
de passe. Mais comme il ne faut pas perturber les habitudes cultu-
relles de la clientèle, l’usage de ce système d’identification et d’au-
thentification est facultatif, ce qui lui retire toute efficacité réelle.
De même, NT comportait un système de protection des fichiers et
d’autres objets par listes de contrôle d’accès (ACL) ; ce système, di-
rectement hérité de VMS, est robuste, mais pour qu’il ne bloque pas
irrémédiablement un trop grand nombre de vieux programmes hé-
rités du passé, il est implémenté en mode utilisateur, ce qui le rend
très vulnérable aux attaques et lui retire donc tout intérêt. Et pour
couronner le tout, les premières versions de NT, jusqu’au Service
Pack 3 de NT 4 en mai 1997 (en fait une nouvelle version), étaient
gourmandes en mémoire, lentes et instables (les fameux écrans bleus
qui s’affichaient lors des pannes système causaient le découragement
des utilisateurs).

La désaffection qui accueillit Windows NT et la persévérance
des clients à utiliser les vieux systèmes 16 bits basés sur MS-DOS
conduisit Microsoft à prolonger leur vie sous les noms de Windows
98 et Windows Me. Ces anciens systèmes, notoirement faibles du
point de vue de la sécurité, ont vécu encore des années. En principe
Windows XP aurait dû sonner l’heure de la réunification entre les
systèmes grand public et les systèmes d’entreprise.

Windows 2000, ses successeurs

On trouvera une description détaillée de Windows 2000 dans le
livre de Solomon et Russinovich Inside Windows 2000 [123], mais
l’exposé de Tanenbaum dans son livre Modern Operating Systems
[126] constitue déjà une introduction substantielle.
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Windows 2000, en fait la version 5 de Windows NT, était un sys-
tème plein de bonnes résolutions. Le modèle de sécurité et son im-
plémentation ont été revus, conformes aux standards (IPSec, Ker-
beros, LDAP, X509), le service de noms était fondé sur le DNS à la
mode Internet, le système de fichiers NTFS était doté de fonctions
de chiffrement applicables aux fichiers individuels, aux répertoires
ou à toute une partition. Chaque processus peut contrôler un ou
plusieurs threads , qui sont gérées par le noyau. En fait on pourrait
plutôt reprocher à Windows 2000 sa profusion : plus de 30 millions
de lignes de code, des centaines d’appels système pour le système
au sens restreint du terme (gestion des processus, de la mémoire,
des I/O, de la synchronisation, des fichiers et de la protection), des
milliers d’appels système pour l’interface graphique.

Autant dire que c’est un système peu intelligible, ce qui est
parfois aussi gênant qu’un système indigent : ainsi l’implémentation
des dispositifs de protection et de sécurité est obscure, ce qui ne
donne à l’ingénieur de sécurité d’autre choix que de leur faire une
confiance aveugle, avec les inconvénients que nous avons soulignés
à la p. 271.

Un des aspects intéressants de Window 2000 est sa couche d’abs-
traction du matériel (HAL, pour Hardware Abstraction Layer) si-
tuée sous le noyau, et qui regroupe tous les aspects du système trop
dépendants d’un matériel particulier, comme les interfaces avec les
périphériques, la gestion de l’accès direct à la mémoire pour les opé-
rations d’entrée-sortie, des interruptions, de l’horloge, des verrous
de synchronisation des multi-processeurs, l’interface avec le BIOS,
etc. Bref, Windows rejoint enfin le niveau d’abstraction de CP/M.

Symétriquement, l’accès des programmes en mode utilisateur
aux services système se fait à travers une couche d’interface consti-
tuée de la bibliothèque dynamique NTDLL.DLL.

Windows 2000 dispose d’un système perfectionné de mémoire
virtuelle, assez proche de celui de VMS. Les structures internes des
versions ultérieures de Windows, jusqu’à Windows 10, sont directe-
ment dérivées de Windows 2000, même si les interfaces sont assez
différentes.

François Anceau a publié une excellente synthèse de l’évolution
du PC dans son article La saga des PC Wintel [6], où le lecteur
pourra trouver de nombreuses données supplémentaires.

À la fin de l’année 2002 une proportion écrasante des ordina-
teurs en service dans le monde (il y en avait un milliard) fonc-
tionnait avec une version ou une autre de Microsoft Windows. En
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2013, Cisco (qui est bien placé pour le savoir) estimait à 8,7 mil-
liards le nombre d’ « objets » connectés à l’Internet 3, et si l’on
observe la répartition des accès au Web selon le système d’exploi-
tation émetteur de la requête, Windows ne représente plus en 2018
que quelques 35% des accès, sévèrement concurrencé par MacOS et
surtout Android, un système d’exploitation créé par Google, dérivé
de Linux et équipé d’un système Java spécifique (machine virtuelle
Dalvik initialement, ultérieurement remplacée par un environne-
ment d’exécution en code natif ART, pour Android Runtime) pour
le développement d’applications. Android est utilisé pour les smart-
phones et les tablettes.

11.3 La saga des processeurs Intel
La naissance et l’essor des micro-ordinateurs, qui sont

aujourd’hui les ordinateurs tout court, est inséparable de celle
des processeurs Intel, qui méritent ici une section particu-
lière.

Pour compléter les informations de cette section on
pourra consulter l’excellent article de Samuel « Doc TB »
Demeulemeester « L’épopée des microprocesseurs - Un demi-
siecle d’évolution » [43] dans « Canard PC Hardware ».

Cette section emprunte certaines informations à l’ar-
ticle de Tom R. Halfhill dans le numéro de février 2009 de
« Microprocessor Report » et à une conférence de Richard S.
Tedlow, professeur à Harvard Business School.

11.3.1 Quand les microprocesseurs étaient du bricolage
En 1968 Robert Noyce et Gordon Moore quittent Fairchild, l’en-

treprise qu’ils avaient créée et où Noyce avait inventé en 1958 le
circuit intégré 4, pour créer une nouvelle entreprise, Intel, et y in-
venter le microprocesseur. Cette date est historique parce qu’elle
inaugure la troisième révolution industrielle 5, dont Michel Volle 6

3 https://blogs.cisco.com/news/cisco-connections-counter/
4 Jack Kilby, chez Texas Instruments, avait fait la même invention indépen-

damment la même année.
5 La première, à la fin du XVIIIe siècle, reposait sur la chimie, la métallurgie

et la machine à vapeur ; la seconde, à la fin du XIXe siècle, sur l’électricité
industrielle et le moteur à combustion interne.

6 Cf. https://michelvolle.blogspot.com/2015/03/
le-secret-de-liconomie.html

https://blogs.cisco.com/news/cisco-connections-counter/
https://michelvolle.blogspot.com/2015/03/le-secret-de-liconomie.html
https://michelvolle.blogspot.com/2015/03/le-secret-de-liconomie.html
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ne manque pas de nous rappeler qu’elle est gouvernée par des lois
économiques différentes et qu’il lui faudra un système éducatif, une
organisation du travail et un encadrement législatif différents, qui
lui manquent aujourd’hui, avec les troubles qui en résultent pour
l’éducation, pour l’emploi et pour le droit des affaires.

Sur le moment personne ne perçoit l’importance de l’événement.
Le premier microprocesseur, le 4004, sorti d’usine en novembre
1971, est certes un ordinateur complet dans un seul circuit intégré,
mais un ordinateur très rudimentaire et très lent. Les industriels de
la « grande informatique » (ou de la moyenne...) ne disposaient pas
d’instruments d’optique suffisamment puissants pour simplement
voir cet objet, alors de là à comprendre qu’il allait révolutionner
leur activité et conduire la plupart d’entre eux à disparaître, le pas
était grand.

Les gens qui fabriquent des microprocesseurs, et ceux qui les uti-
lisent en les incorporant, au prix de mille astuces, dans des appareils
de plus en plus ingénieux, passent pour d’aimables bricoleurs, ainsi
dès 1972 les Français André Truong Trong Thi et François Gernelle
qui conçoivent le micro-ordinateur Micral autour du microproces-
seur Intel 8008. En janvier 1975, MITS (Model Instrumentation
Telemetry Systems, fondée à Albuquerque, au Nouveau-Mexique,
par Ed Roberts) lance l’Altair 8800, un micro-ordinateur basé sur
l’Intel 8080 et vendu en kit par correspondance pour 400 dollars :
cela ne peut pas être sérieux...

Si les industriels de l’informatique ne font pas grand cas du
microprocesseur, ceux de l’électronique et leurs clients n’ont pas
mis longtemps à comprendre le parti à en tirer. Remplacer une
douzaine de circuits intégrés connectés les uns aux autres par une
seule puce programmée et reprogrammable en cas de besoin divise
les coûts par dix et simplifie la maintenance.

La conception d’un nouveau processeur ne demande alors que
quelques semaines de travail à une dizaine d’ingénieurs, parce que
l’architecture n’en est pas très complexe : le 4004 ne comporte que
2 300 transistors, son successeur le 8008 en aura 3 300, le 8080,
lancé en 1974, à peu près 6 000. Ces chiffres sont à comparer aux
731 millions de transistors sur une puce de 263 mm2 de l’Intel Core
i7 de 2008, dont la conception a représenté une charge de l’ordre de
1 000 années-hommes (et en 2015 l’Intel Core i3/i5/i7, architecture
Skylake, a 1 750 000 000 transistors en 14nm).

En bref, les premiers microprocesseurs sont perçus comme des
objets simples, bon marché, faciles à concevoir, pratiques, mais bas-
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sement utilitaires. Jusqu’au début des années 1980 d’ailleurs l’es-
sentiel du chiffre d’affaires d’Intel provient des mémoires et d’autres
types de composants.

11.3.2 Accords de seconde source et offensive japonaise
Une caractéristique intéressante du marché des microproces-

seurs dans sa première décennie était la présence systématique d’ac-
cords de seconde source. Les donneurs d’ordres, qui étaient en gé-
néral des entreprises de beaucoup plus grande taille que les fournis-
seurs, voulaient des garanties de régularité des approvisionnements,
et aussi faire pression sur les prix, et pour ce faire ils imposaient
à Intel et aux autres fabricants de microprocesseurs, tels Zilog ou
Motorola, de céder à d’autres sociétés la licence qui leur permet-
trait de fabriquer leurs produits. Ainsi le 8086 d’Intel, lancé en
1978 (29 000 transistors, dessiné en 3µm) était fabriqué en seconde
source par AMD, Fujitsu, Harris Semiconductor et quelques autres.
Le dessin du microprocesseur n’était pas considéré comme un ac-
tif de grande valeur, et le céder à un concurrent ne soulevait pas
d’objection.

Le lancement en 1981 du micro-ordinateur IBM PC, basé sur
un processeur Intel 8088, version dégradée du 8086, allait boule-
verser les conditions économiques de ce marché, en transformant la
micro-informatique, jusque là destinée à un public de hobbyistes,
en industrie d’importance mondiale.

On aurait pu penser que cette évolution allait faire la fortune
d’Intel : elle a failli causer sa ruine et sa disparition. En effet la
croissance rapide du marché des microprocesseurs avait attiré de
grandes entreprises japonaises telles que NEC, Fujitsu et Hitachi,
ou américaines comme Texas Instruments ou National Semiconduc-
tors, lesquelles disposaient de capacités d’investissement sans com-
mune mesure avec celles d’Intel, ce qui provoqua une baisse des prix
et une diminution importante de la profitabilité de cette activité.
En 1983 Intel n’était plus que le dixième producteur mondial de
circuits intégrés et son déclin semblait inéluctable.

Un des facteurs de la supériorité des Japonais, outre leur capa-
cité supérieure d’investissement, résidait dans leurs meilleures per-
formances en production : le taux de microprocesseurs défectueux
en sortie de leurs usines était de deux ordres de grandeur inférieur
à celui d’Intel. Pour dessiner des processeurs sur une galette de sili-
cium (le wafer), on utilise une machine très complexe et onéreuse, le
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stepper 7, dont à l’époque le premier fabricant mondial était Nikon
au Japon, et Nikon collaborait directement avec les fabricants de
semi-conducteurs japonais, qui avaient ainsi accès en priorité aux
innovations. Aujourd’hui le marché mondial du stepper se partage
entre Nikon, Canon, l’américain Ultratech, le néerlandais ASML 8

et quelques autres.

11.3.3 Comment l’industrie américaine fit face au Japon
Il faut rappeler qu’à cette époque le marché des grands sys-

tèmes IBM représentait les trois quarts du marché informatique
mondial, et que les industriels japonais s’en étaient approprié une
part très significative. Encore en 1989, Fujitsu était le numéro 2
du marché derrière IBM, NEC le numéro 4 derrière Digital Equip-
ment alors à son apogée, Hitachi le numéro 6. L’emprise japonaise
se renforçait aux deux extrémités du marché, semi-conducteurs et
gros ordinateurs, et elle semblait invincible. On trouvera des chiffres
et quelques hypothèses sur les facteurs qui ont permis que l’indus-
trie américaine redresse sa position sur le site de l’auteur 9. Ici nous
allons plus précisément examiner comment Intel est redevenu le
leader mondial d’une industrie qu’il avait créée.

Parmi les facteurs du redressement, il faut noter que les indus-
triels américains des semi-conducteurs ont évité une attitude qui
fut fatale à de nombreuses entreprises informatiques : la suffisance.
Très tôt ils ont reconnu la force de la menace japonaise et ils ont
su surmonter leurs rivalités et, jusqu’à un certain point, unir leurs
forces pour la juguler. Dès 1977 avait été créée la Semiconductor
Industry Association 10, qui elle-même créa en 1982, à l’initiative
de Bob Noyce, une filiale destinée à organiser et à financer la re-
cherche pré-compétitive, Semiconductor Research Corp. 11 (SRC).
Les statuts de SRC prévoyaient explicitement le refus d’accepter
des membres non-américains.

La SIA et SRC ne furent en aucun cas des organisations po-
tiches. Elles reçurent des financements importants en provenance
des industriels et des pouvoirs publics, notamment du Department

7 Cf. http://en.wikipedia.org/wiki/Stepper
8 Cf. http://en.wikipedia.org/wiki/ASML_Holding
9 Cf. https://laurentbloch.net/MySpip3/Industrie-electronique-et-informatique-americaine
10 Cf. http://www.sia-online.org/abt_history.cfm
11 Cf. http://www.src.org/member/about/history.asp
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https://laurentbloch.net/MySpip3/Industrie-electronique-et-informatique-americaine
http://www.sia-online.org/abt_history.cfm
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of Defense (DoD), et s’engagèrent dans une politique de collabo-
ration active avec les Universités ; ces actions eurent pour fruits de
nombreuses innovations techniques et le redressement de la courbe
de progrès de l’industrie américaine, innovations et progrès dont
les bénéfices étaient explicitement réservés aux entreprises améri-
caines.

11.3.4 Le tournant du 386
La création de la SIA et de SRC ont contribué à rétablir la

position de l’industrie américaine des semi-conducteurs en général,
mais il reste à expliquer le redressement particulier d’Intel, qui en ce
début des années 1980 était en grand péril, et c’est là que l’analyse
du professeur Tedlow nous éclaire.

En 1982 Intel lança le 286 (134 000 transistors, 1,5µm), sur la
base duquel IBM lança le PC AT, dont Tedlow nous fait observer
qu’il est le premier signe du transfert du leadership technologique
d’IBM à Intel, dans la mesure où les seules innovations apportées
par le PC AT proviennent du 286. Le 286 fait l’objet d’accords
de seconde source avec IBM, AMD, Harris (Intersil), Siemens et
Fujitsu.

Pour succéder au 286, Intel voulait produire un processeur à
architecture 32 bits, et non plus 16 bits comme le 8086 et le 286,
ou a fortiori 8 bits comme le vieux 8080 12. Une architecture 32
bits serait de nature à abolir les limitations techniques gênantes
des systèmes 16 bits, notamment en termes de taille de la mémoire
adressable, mais un impératif était donné aux ingénieurs de l’équipe
de conception : il fallait que le nouveau processeur, le 386, soit com-
patible avec ses prédécesseurs, c’est-à-dire que les logiciels qui fonc-
tionnaient avec le 8086 ou avec le 286 soient encore utilisables.

Pour atteindre cet objectif ambitieux, Intel réunit une équipe
brillante et dépensa 100 millions de dollars, le double de ce qu’avait
coûté le design du 286. La définition de l’architecture prit un an : cet

12 Quand on dit que l’architecture d’un processeur est à 32 bits, cela signifie,
sans trop entrer dans les détails, que les nombres entiers relatifs qu’il sait
traiter ont 31 chiffres binaires, soit une valeur absolue de l’ordre de 2 mil-
liards, que la taille de sa mémoire peut théoriquement atteindre 4 milliards
de caractères, et que les échanges de données entre le processeur, la mémoire
et les organes prériphériques se font par paquets de 32 bits, soit quatre oc-
tets. Sous réserve bien sûr de dispositifs techniques ingénieux pour dépasser
ces limites.
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investissement devait s’avérer durable, puisque selon toute vrais-
semblance le processeur de l’ordinateur avec lequel vous lisez cet
article, Mac ou PC, est un descendant direct du 386, c’est-à-dire
qu’il exécute les mêmes instructions élémentaires.

Le 80386 13 (275 000 transistors, 1,5µm) fut lancé en 1985 et fut
un immense succès technique, mais pas seulement. Comme IBM
restait fixé au 286, pour lequel il avait développé un système d’ex-
ploitation spécialement adapté, OS/2, d’autres industriels furent les
premiers à produire des ordinateurs à base de 386, au premier rang
desquels Compaq. Et Microsoft lança la première version de Win-
dows pour ces ordinateurs, qui se révélèrent rapidement plus puis-
sants et plus faciles à utiliser que ceux d’IBM : le couple Windows-
386 sonnait le glas de l’hégémonie d’IBM sur le marché du PC.

11.3.5 Fin des accords de seconde source
Microsoft, IBM et Compaq ne furent pas les seuls à être affectés

par les innovations du 386 : Intel aussi, bien sûr.
Pour protéger ses investissements et permettre aux prix de re-

monter, Intel (en la personne de son Chief executive officer Andy
Grove) décida de ne pas accorder de licence de seconde source pour
le 386. Cette décision révolutionnaire, mal comprise à l’époque,
était accompagnée de mesures de réorganisation interne, notam-
ment pour améliorer la qualité de la production. Une autre décision
fut prise, qui prit à rebrousse-poil beaucoup d’ingénieurs d’Intel :
abandonner la production des mémoires, qui représentait alors la
principale source de profit de l’entreprise.

Andy Grove avait compris que le centre de gravité de l’indus-
trie micro-électronique s’était déplacé des États-Unis au Japon, et
il suscita une initiative destinée à gagner pour Intel des clients japo-
nais, qui représentaient le critérium de l’exigence technique. Pour
gagner le marché international des microprocesseurs, il fallait battre
les concurrents japonais sur leur propre terrain, afin de convaincre
la clientèle internationale de la supériorité des produits Intel.

La décision de garder le monopole du 386 fut prise à un moment
où Intel était en train de regagner le leadership qu’il avait perdu
tant dans la technologie que pour la qualité et la capacité de pro-
duction. Cette décision fut à l’origine de la remontée d’Intel vers la
première place dans l’industrie des semi-conducteurs, qu’il occupe

13 Cf. https://en.wikipedia.org/wiki/Intel_80386

https://en.wikipedia.org/wiki/Intel_80386


La saga des processeurs Intel 386

aujourd’hui solidement avec un chiffre d’affaires 2008 de 33,767 mil-
liards de dollars, double de celui du second, Samsung avec 16,902
milliards de dollars.

11.3.6 Fin de l’intégration verticale
Un effet collatéral de la nouvelle orientation d’Intel, de son re-

nouveau et du succès du 386 fut la fin du modèle alors en vigueur
dans l’industrie informatique : l’intégration verticale. Jusqu’alors,
tant IBM que Control Data ou Digital Equipment concevaient et
fabriquaient les éléments électroniques de l’unité arithmétique et
logique de leurs ordinateurs, de sa mémoire et de ses périphériques
tels que disques, dérouleurs de bande et autres imprimantes, et
ils en produisaient le logiciel, depuis le système d’exploitation jus-
qu’au traitement de texte. À partir de 1986, l’industrie informatique
devint essentiellement une industrie d’assemblage, et même IBM
achète la plus grande partie de ses processeurs, de ses mémoires et
de ses disques, sans parler du logiciel. Intel et Microsoft tiennent en
main les cartes maîtresses de ce jeu, ils en tirent les ficelles, parce
que leur technologie incorpore bien plus de valeur ajoutée que les
usines d’assemblage, au demeurant fort bien conçues, de Dell 14.

11.3.7 Conversion silencieuse à l’architecture RISC
Comme nous l’avons signalé ci-dessus dans la section consa-

crée à l’architecture RISC (Reduced Instruction Set Computer, cf.
p. 320), celle-ci a révolutionné la conception des microprocesseurs
en en améliorant considérablement les performances ainsi que les
délais de conception et de mise au point, grâce à sa simplicité.
À partir de 1985 la plupart des constructeurs d’ordinateurs lan-
cèrent leur propre architecture RISC : MIPS (créé pour la circons-
tance), Hewlett-Packard, Sun, IBM et Digital Equipment Corpora-
tion (DEC). Au tournant de la décennie 1990, il était communément
admis que le temps de l’architecture CISC (Complex Instruction Set
Computer) était révolu.

C’était sans compter avec le poids de l’existant : pendant le
même laps de temps, le marché de l’ordinateur personnel devenait
décisif pour l’industrie, le parc de logiciels grand public pesait lour-
dement sur ce marché, et ces logiciels étaient écrits pour des proces-

14 Cf. https://laurentbloch.net/MySpip3/Crise-du-modele-Dell-Computer
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seurs Intel x86 d’architecture CISC ; cette architecture allait donc
continuer à dominer le marché, et le dominerait encore aujourd’hui
sans l’essor des téléphones portables, en quasi-totalité équipés de
processeurs ARM d’architecture RISC.

Mais les ingénieurs d’Intel avaient compris que s’ils ne voulaient
pas être irrémédiablement distancés en termes de performances, ils
devaient tirer partie des avantages du RISC. La solution retenue
sous le nom d’architecture P6, sous la conduite de Robert Colwell,
fut de construire un processeur doté d’unités d’exécution RISC en-
tourées d’un micro-code de traduction qui présenterait l’interface
habituelle de l’architecture x86 CISC, au prix d’une certaine dé-
gradation des performances et d’une surconsommation électrique
importante. Le premier processeur P6 fut le Pentium Pro, présenté
en novembre 1995, puissant mais cher, suivi de versions plus acces-
sibles. Aujourd’hui (2018) tous les processeurs Intel reposent sur ce
principe architectural (cf. l’article de Samuel « Doc TB » Demeu-
lemeester L’épopée des microprocesseurs - Un demi-siecle d’évolu-
tion [43] dans Canard PC Hardware pour plus de détails).

11.4 Une alternative : MacOS
MacOS est apparu avec le Macintosh en 1984. En 2002, Apple

s’est engagé dans un processus destiné à lui substituer MacOS X,
qui est en fait un système totalement nouveau bâti sur un micro-
noyau Mach 3 surmonté d’un serveur Unix BSD 15 (cf. p. 361).
Nul doute que ce changement soit bénéfique : un système Unix sur
un micro-noyau représente une base architecturale solide, mais un
changement de système est une opération lourde qui implique des
modifications dans toute la gamme de logiciels disponibles. Apple
a fait montre dans cette affaire de sa grande maîtrise des interfaces
homme-machine, parce que la plupart des utilisateurs ne se sont
pas aperçus de ce changement de système, pourtant radical !

15 Ce changement d’orientation technique décisif fut la conséquence d’un chan-
gement politique tout aussi décisif à la tête d’Apple : Steve Jobs avait été
évincé en 1983 de l’entreprise qu’il avait créée au profit d’un « vrai mana-
ger » venu de Pepsi Cola, John Sculley, qui en restera le dirigeant jusqu’en
1993. Jobs a créé an 1985 une autre entreprise, NeXT, qui n’a pas eu de
grand succès commercial, mais au sein de laquelle fut élaboré l’OS qui allait
devenir MacOS X après l’échec pitoyable du « vrai manager ».
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MacOS (de version 9 ou antérieure, dans les lignes qui suivent
c’est de ces versions que nous parlons, à l’exclusion de MacOS X
et des versions ultérieures macOS) souffrait des mêmes défauts ar-
chitecturaux que Windows 95 ou 98, mais à un degré moindre de
gravité. Comme ceux-ci il s’agissait d’un système au caractère pré-
emptif incertain et au code le plus souvent non réentrant, de ce fait
sujet aux blocages et aux arrêts brutaux causés par des conflits ou
des étreintes fatales entre processus, si ce n’est tout simplement par
le déclenchement d’une interruption asynchrone à un moment où le
système n’est pas dans un état convenable pour la recevoir. De fait,
la « multiprogrammation coopérative » entre programmes pseudo-
simultanés n’est possible de façon sûre que si la commutation entre
processus a lieu à des emplacements bien déterminés du code, lors
de l’appel au sous-programme de bibliothèque WaitNextEvent, et
en effectuant à cette occasion des manipulations de données en-
fouies profondément dans le système. Bref, MacOS n’était pas un
vrai système multi-tâches.

Le « vieux » MacOS disposait d’un espace mémoire unique où
cohabitaient sans protection le système et les programmes lancés
par l’utilisateur. Le système était accompagné d’une vaste biblio-
thèque de fonctions généralement connue sous le nom de Toolbox,
et fonctionnait en étroite symbiose avec des éléments codés en mé-
moire ROM (Read-Only Memory, une mémoire incorporée au ma-
tériel de telle sorte que le contenu en soit inaltérable) et protégés
par des brevets, ce qui a empêché la production d’ordinateurs com-
patibles avec le Macintosh par d’autres industriels, sauf pendant la
courte période où Apple a vendu des licences. La Toolbox n’était
pas réentrante et faisait un usage systématique de variables d’état
globales, ce qui rendait très problématique par exemple le dévelop-
pement d’applications en Java qui auraient utilisé les possibilités de
multithreading de ce langage. D’ailleurs l’implémentation de Java
sous MacOS a toujours été réputée problématique. Comme sous
Windows 95 et 98, les développeurs ont tant bien que mal résolu
ces problèmes en ayant recours à de longues sections critiques pro-
tégées par des verrous de contrôle exclusif.

Si la situation engendrée par ces lacunes des anciens MacOS a
été moins calamiteuse que dans le cas de Windows 95 et 98, c’est
pour une série de raisons contingentes. D’abord, le système MacOS
et tous les Macintosh qu’il devait faire fonctionner étaient conçus
par une seule entreprise en un seul lieu, Apple à Cupertino. Ceci
permettait une grande cohérence dans les développements et évitait
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de livrer au client des systèmes trop incertains. Ensuite, Apple a
su coordonner le travail de tous les développeurs de logiciels et de
matériels extérieurs à la société de telle sorte qu’ils respectent tous
les mêmes règles d’interface. C’est ce qui fait l’agrément d’usage du
Macintosh : quel que soit le logiciel que l’on utilise, les mêmes fonc-
tions sont toujours réalisées de la même façon, en cliquant au même
endroit sur un article de menu qui porte le même nom. Microsoft
est venu un peu tard à cette discipline. De ce fait le Macintosh doté
de MacOS, même une version antique, est beaucoup plus agréable
à utiliser et déclenche beaucoup moins d’appels au secours en di-
rection du service d’assistance qu’un système sous Windows.

MacOS X est un système entièrement nouveau qui repose sur
d’excellentes fondations techniques : c’est un Unix BSD assis sur
un micro-noyau Mach et surmonté d’une interface homme-machine
aussi réussie que les précédentes versions de MacOS. Il a permis
à Apple de reconquérir sur les machines sous Windows un terrain
alors réduit à 2 ou 3% du marché. Il a surmonté la concurrence des
solutions à base d’Unix libres, moins onéreuses à l’achat. La facilité
d’usage par le naïf est un critère vital, et la réponse à ces incer-
titudes a donc été oui. Parce que durant quelques années, grâce à
l’architecture du PC à processeur Intel et à Windows qui échouait à
en dissimuler les détails intimes à l’utilisateur, le monde a été plein
de comptables qui potassaient les niveaux d’interruption associés à
leur cartes graphiques et de présidents d’universités qui expérimen-
taient les combinaisons possibles de configurations de leurs disques
IDE pendant les heures de travail, ce qui avait indubitablement un
coût très supérieur à la valeur ajoutée résultante.

11.5 Autre alternative : Unix
En fait pour être complet il faudrait dire « Unix libre sur PC

de super-marché ». Microsoft et Intel, rendons leur cette justice,
ont rendu possible le PC à 300 Euros. Rappelons-nous également
qu’en 1980 Bill Gates pensait qu’Unix était le système d’avenir pour
les micro-ordinateurs, et que pour cette raison il avait acquis une
licence Unix pour lancer sa version de ce système : Xenix.

Maintenant sur une telle machine il est possible d’installer un
autre système que Windows, Linux le plus souvent, en tout cas
pour l’utilisateur final. Le principal avantage de Windows, c’est
que lorsque vous achetez le PC il est déjà installé, avec en général
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quelques logiciels en plus, dont le traitement de texte habituel dont
le lecteur n’imagine peut-être pas qu’il puisse être remplacé par
autre chose. Il faut un cœur bien accroché pour formater son disque
dur et entreprendre d’y installer un système téléchargé sur une
clé USB, d’autant plus que le traitement de texte en question n’y
est pas. Le particulier isolé hésitera sans doute, mais si son voisin
d’amphithéâtre ou son collègue de laboratoire lui promettent aide
ou assistance, il franchira peut-être le pas. À la fin de l’année 2002
on estimait à vingt millions les ordinateurs qui fonctionnaient sous
Linux, devenus 70 millions en 2013 : ce n’est pas si peu, mais si
Linux équipe la moitié des serveurs en entreprise et 100% des super-
calculateurs 16, il a du mal à conquérir le grand public, sauf sous la
forme Android, qui équipait selon Gartner 79% des smartphones et
des tablettes vendus en 2013. Des interfaces homme-machines qui
rappellent celle de Windows sont apparues (Gnome, KDE, Xfce...)
et ne fonctionnent pas plus mal que l’original.

Plus fondamentalement, la question est de savoir si le système
d’exploitation payant a un avenir. Microsoft répond oui, bien sûr,
et pour XP a introduit de façon systématique des redevances pé-
riodiques pour qui veut disposer des nouvelles versions du système.
Cette politique me rappelle l’IBM des années 1970, qui détenait
plus de 90% du marché et ne connaissait pas de limite à la domi-
nation sur le client. On a vu la suite. Il est sûr en tout cas que le
logiciel libre occupe aujourd’hui une place telle qu’il ne s’évaporera
pas en une nuit, et que dans le domaine plus particulier du système
d’exploitation il fait peser une hypothèque assez lourde sur l’avenir
du logiciel privé.

La domination absolue et éternelle du marché par une seule
firme est un fantasme propre au monde de l’informatique : IBM hier,
Microsoft aujourd’hui, ou sur des secteurs plus spécialisés Oracle et
Cisco. Même dans ses rêves les plus euphoriques le président de
General Motors a toujours su qu’il y aurait Ford ou Toyota, celui
de Boeing qu’il y aurait EADS.

Michel Volle [133] nous a bien expliqué le mécanisme de forma-
tion des monopoles dans l’industrie informatique : elle fonctionne
sous le régime de la concurrence monopolistique évoquée p. 295 :

« Lorsque le rendement d’échelle est croissant le coût unitaire
le plus bas sera celui de l’entreprise qui produit la plus grande

16 http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
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quantité. Elle sera donc en mesure d’évincer ses concurrents en
proposant un prix inférieur au leur : ce marché obéit au régime du
“monopole naturel”.

On pourrait donc s’attendre à ce que tous les marchés soient
dans l’iconomie dominés par un monopole. Il n’en est cependant
rien car les entreprises disposent d’une arme qui leur permet de
résister : la diversification du produit en variétés. »

C’est dans l’illusion de la pérennité de ces monopoles que réside
le caractère fantasmatique de la croyance. Parce que dans la réalité
diachronique la vitesse de l’innovation technologique fait et défait
les positions les plus solides, les plus monopolistes. Tôt ou tard
Microsoft suivra la voie d’IBM, voire celle de Digital Equipment.

Risquons l’hypothèse que ce fantasme (heureusement réguliè-
rement démenti par les faits) soit engendré par une proximité in-
quiétante (et d’ailleurs surestimée) entre l’esprit que nous prêtons
à l’ordinateur et le nôtre. Toute pluralité du démiurge de cet esprit
introduit une sensation d’insécurité semble-t-il intolérable. Nous as-
pirons à l’unité des processeurs et des mémoires. Que le voisin soit
« sous un autre système » nous perturbe, nous le lui faisons savoir
avec véhémence, parfois. Voici donc enfin l’explication des contro-
verses lors des dîners en ville évoquées dans les premières lignes de
ce livre : j’espère ainsi ne pas l’avoir écrit en vain.
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12.1 Sous le système, le micrologiciel
Tout au long de cet ouvrage nous avons décrit le fonctionne-

ment du système d’exploitation, ainsi que celui du matériel infor-
matique et du réseau dans la mesure où cela était nécessaire pour
comprendre le système. Mais il existe un autre élément moins vi-
sible mais tout aussi nécessaire au fonctionnement de l’ordinateur,
le micrologiciel (firmware en anglais), que nous avons déjà évoqué
au chapitre 2 p. 22. À l’origine des temps (années 1970) il était
constitué du BIOS (Basic Input/Output System), qui s’est perfec-
tionné pour devenir UEFI (Unified Extensible Firmware Interface),
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implanté dans un composant électronique distinct du processeur,
branché sur la carte-mère.

À partir de 2008 Intel a introduit Intel Management Engine,
dont un composant est Intel Active Management Technology (AMT,
les autres industriels tels AMD et ARM disposent de technologies
équivalentes) ; il s’agit en fait d’un ordinateur complet, implanté
dans un composant électronique distinct, avec un véritable système
d’exploitation, qui supervise tout le fonctionnement de l’ordinateur,
notamment du point de vue de la sécurité. Nous allons examiner
ces dispositifs.

12.2 Dispositif d’amorçage du système
À la page 37 nous avons donné une première description du

dispositif de démarrage d’un ordinateur et d’amorçage (boot) de
son système d’exploitation. Tous les ordinateurs contemporains uti-
lisent pour réaliser la première phase de cette fonction un logiciel
assez particulier généralement intitulé BIOS (Basic Input/Output
System). Le BIOS a été inventé en 1975 par Gary Kildall pour son
système d’exploitation CP/M (cf. p. 371).

Le BIOS est enregistré dans un élément de mémoire non-volatile
physiquement distinct des autres composants de la carte mère de
l’ordinateur ; depuis les années 1990 c’est en général de la mémoire
Flash, analogue à celle des clés USB et des disques SSD, ce qui per-
met de le modifier, et ce qui introduit par conséquent un risque de
modification malveillante. La carte mère et le processeur sont confi-
gurés de sorte qu’à la mise sous tension ce programme soit chargé
dans la mémoire vive et commence son exécution. L’action de ce
programme consiste essentiellement à aller chercher sur une mé-
moire externe (disque dur, clé USB...) préparée à cet effet un autre
programme un peu moins petit, à le recopier en mémoire centrale et
à en déclencher l’exécution. Ce processus est connu sous le nom de
boot-strap ou simplement boot, mais il est permis de dire amorçage.
Comme indiqué p. 37, c’est ce programme de boot qui va charger
en mémoire le noyau du système d’exploitation, éventuellement à
partir d’un serveur de boot sur le réseau. Afin de simplifier les opé-
rations du BIOS (rappelons-nous que ces mécanismes avaient été
conçus en des temps de processeurs lents et de mémoire de faible ca-
pacité), le programme de boot était le plus souvent enregistré dans
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le premier secteur du premier disque visible sur le bus 1. Ce secteur
contenait aussi la table des partitions « ancien style » du disque, il
est nommé Master Boot Record (MBR, cf. p. 133, où nous avons
abordé ces questions sous l’angle du système de fichiers). Nous al-
lons voir que les systèmes plus modernes avec des mémoires et des
disques plus spacieux n’utilisent plus vraiment le MBR (sauf s’ils
comportent toujours un BIOS pour pouvoir démarrer à partir de
supports à l’ancienne mode tels que cédéroms), mais que la table
des partitions et le logiciel d’amorçage occupent des espaces plus
vastes ailleurs sur le disque.

Nous avons vu p. 373 comment, lors du lancement en 1981 du
PC, IBM en a publié toutes les spécifications techniques, et notam-
ment celles de la version simplifiée du BIOS qu’ils avaient adop-
tée (avec le code source !). Ce BIOS était à l’échelle des capaci-
tés des mémoires et des disques de l’époque, avec notamment au
plus quatre partitions physiques sur le disque dur, lequel pouvait
comporter (jusque dans les années 1990) au maximum 1024 cy-
lindres, 256 têtes, 63 secteurs par piste, 2,2 téraoctets de capacité
totale. Il a fallu longtemps jongler avec ces limites, jusqu’à ce que le
constructeur Intel et à sa suite AMD, American Megatrends, Apple,
Dell, HP, IBM, Insyde, Microsoft, Phoenix Technologies, etc. créent
l’UEFI Forum pour promouvoir l’Unified Extensible Firmware In-
terface 2 (UEFI, « Interface micrologicielle extensible unifiée », stan-
dard publié en 2006, destinée à se substituer au vieux BIOS).

12.3 UEFI pour remplacer le BIOS
L’Unified Extensible Firmware Interface (UEFI, « Interface mi-

crologicielle extensible unifiée » donc) vient abolir les limitations
énoncées ci-dessus pour le démarrage de l’ordinateur et l’amorçage
du système d’exploitation. Elle est accompagnée du système de par-
titionnement GPT, pour GUID Partition Table (Globally Unique

1 Il est possible d’interrompre le déroulement de la phase d’amorçage avant
le démarrage du système d’exploitation afin de changer de périphérique de
démarrage, par exemple pour installer un nouveau système d’exploitation à
partir d’une clé USB. Ceci se fait par pression, pendant le démarrage, sur la
touche F2, ou F9, ou F10, ou Escape, ou Delete, ou Suppr (cela dépend du
système et du modèle de matériel).

2 Cf. https://fr.wikipedia.org/wiki/Unified_Extensible_Firmware_
Interface

https://fr.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://fr.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
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IDentifier Partition Table), capable de gérer un disque de capacité
9,4 ZB (9, 4 × 1021 octets) ou 8 ZiB (9 444 732 965 739 290 427 392
octets).

Vient en sus un autre dispositif : Secure Boot, destiné à em-
pêcher le démarrage sur cet ordinateur d’un système non signé
par une autorité d’accréditation, en l’occurrence Microsoft. Là les
choses commencent à paraître moins séduisantes. Cette élévation
de Microsoft au rang d’autorité universelle chargée de délivrer ou
de refuser le droit de fonctionnement à tout système d’exploitation
est un privilège exorbitant. Inutile de dire que la communauté du
logiciel libre n’a pas apprécié. Dans sa grande bonté et mansué-
tude, Microsoft a accepté de vendre des certificats aux éditeurs des
principales distributions GNU/Linux pour la modique somme de
US $99, somme symbolique, mais justement c’est un symbole lourd
de conséquences, puisqu’il institue la suzeraineté de Microsoft sur
ceux qui accepteront d’être ses vassaux. À ce jour Ubuntu, RedHat
et Fedora ont accepté de passer sous les fourches caudines, mais pas
Debian. Cela dit il est possible, dans le menu du BIOS, de désacti-
ver l’option Secure Boot et d’activer Launch CSM (pour Compatibi-
lity Support Module) qui permet de s’affranchir de cette contrainte,
mais en perdant une partie des avantages novateurs d’UEFI et de
GPT.

Lorsque l’on achète un ordinateur équipé de Windows, le ven-
deur n’a en général pas envisagé que l’acheteur puisse souhaiter y
installer un autre système d’exploitation, soit en remplacement de
Windows, soit en partageant le disque de démarrage entre Windows
et un autre système, par exemple GNU/Linux, selon le principe dit
de double boot. Il appartient alors à l’heureux propriétaire de cet
ordinateur de configurer son disque de façon à faire de la place pour
le nouveau système qu’il souhaite y installer, à créer les partitions
adéquates, et à le doter d’un logiciel d’amorçage qui permette de
choisir au démarrage de l’ordinateur le système d’exploitation à
lancer.

La suite de ce chapitre exposera la manière de configurer un
disque de démarrage porteur de deux systèmes d’exploitation, en
l’occurrence GNU/Linux et Windows, avec le logiciel d’amorçage
GNU GRUB, sur une machine UEFI/GPT. Nous avons déjà décrit
en partie cette procédure au chapitre 5 p. 133, nous examinerons
ici essentiellement ce qui est nouveau avec UEFI et GPT.
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12.4 Le logiciel d’amorçage GNU GRUB
12.4.1 Installation de GRUB

GNU GRUB (GRand Unified Bootloader) est le logiciel d’amor-
çage de référence pour la plupart des distributions Linux et pour
Oracle Solaris. Il peut lancer d’autres systèmes d’exploitation, tels
que Windows ou les différentes variantes de BSD, et il peut charger
des images de systèmes par le réseau. Il supporte divers formats
d’exécutables, diverses géométries de disques, tous les systèmes de
fichiers Unix, ainsi que les systèmes de fichiers Windows FAT et
NTFS. Surtout, il permet d’avoir sur le même disque plusieurs sys-
tèmes d’exploitation et de choisir au démarrage celui que l’on veut
utiliser (dual boot).

Depuis 2010 la version supportée par le projet GNU est GRUB
2, émanation du projet japonais PUPA (Preliminary Universal Pro-
gramming Architecture) lancé en 1999 par Yoshinori K. Okuji dans
le but de porter GRUB sur des architectures autres qu’Intel x86,
de le rendre plus compact et modulaire, de le doter d’un langage
de script, d’autoriser les caractères non-ASCII, et quelques autres
améliorations.

En général l’installation de GRUB est réalisée par la procédure
d’installation de toute distribution récente de GNU/Linux. Il est
bien sûr possible de faire la même chose « à la main » avec les
programmes utilitaires grub-install et grub-mkconfig, voire en
écrivant son propre fichier /boot/grub/grub.cfg, mais nous n’en-
trerons pas ici dans ces détails 3.

Un bon schéma vaut mieux qu’un long discours, en voici un qui
résume la configuration de GRUB sur un ordinateur avec un BIOS
à l’ancienne, et en dessous ce qu’il en est avec UEFI et GPT.

3 Si vraiment on en a envie, on pourra se reporter au site du toujours excellent
Chris Hoffman [61].
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Each partition table entry comprises of 16 octets:

Master Boot Record

Magic Number

Volume Partition entry #1
Volume Partition entry #2
Volume Partition entry #3
Volume Partition entry #4

Flag Start CHS Type End CHS Start LBA Size

4 4  octets11 3 3

Volume Boot Record

Magic Number

boot.img

Empty space

⤵

Master Partition entry #1
Master Partition entry #2
Master Partition entry #3
Master Partition entry #4

Sector #0 Sector #63-232
Empty sectors

core.img
32,256 bytes

⤵

Sectors #1-62

Stage 1.5

Contains file system drivers
so it can address Stage 2
by full path and file name

boot.img
446 bytes

Stage 1

⤵

Contains an LBA48 pointer
either

to Stage 1.5
or

to Stage 2

/dev/sdxy

/boot/grub

Location varies

Stage 2

Contains file system drivers
so it can address Stage 2
by full path and file name

boot.img can be written to
a VBR and chainloaded

from a different bootloader
present in the MBR

Figure 12.1 – Organisation d’un disque avec une table de partitions dans le MBR
et GRUB (auteur : Shmuel Csaba Otto Traian, source : Wikimedia Commons,

licence CC BY-SA 3.0).

Master Boot Record

Magic Number

Empty sectors

boot.img
446 bytes

Stage 1

core.img
32,256 bytes

⤵

Master Partition entry #1
empty
empty
empty

Sector #0 Sectors #34-x

GPT Header

Each partition table entry comprises of 128 octets:

Reserved; must be zero

must be zeroes for the rest of
the sector

420 octets for 512-Byte sectors
4004 octets for 4-KiB sectors

Partition type
GUID

  Unique partition
GUID

First
LBA

Last
LBA

Attribute
flags Partition name

8816 16 8

Partition entry array

Reserved

Signature
Revision

Header size in little endian
CRC32 of header

Sector #1 Sector #2

72 octets

Partition entry #1
(128 octets)

Partition entry #2

Partition entry #3

Partition entry #4

Current LBA (this header)
Backup LBA (other header)

First usable LBA for partitions
Last usable LBA

  Disk GUID (UUID)
PEA starting LBA

Number of entries in PEA
Size of an entry (usually 128)

  CRC32 of partition array

Sector #33

Partition entry #125

Partition entry #126

Partition entry #127

Partition entry #128

Stage 1.5

⤵

Contains an LBA48 pointer
either

to Stage 1.5
or

to Stage 2

Contains file system drivers
so it can address Stage 2
by full path and file name

Figure 12.2 – Organisation d’un disque avec une table de partitions GPT et
GRUB (auteur : Shmuel Csaba Otto Traian, source : Wikimedia Commons, sous

licence CC BY-SA 3.0).
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GNU GRUB 2
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Example 1: An MBR-partitioned hard disk with sector size of 512 or 4096 bytes

Example 2: A GPT-partitioned hard disk with sector size of 512 or 4096 bytes
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Figure 12.3 – Partitions d’un disque dual-boot avec GRUB (auteur : Shmuel
Csaba Otto Traian, source : Wikimedia Commons, sous licence CC BY-SA 3.0).

12.4.2 Partition du disque
Les sections qui suivent décrivent les opérations de prépa-

ration d’un disque préalablement à l’installation d’un système
GNU/Linux, soit seul, soit à côté d’un système Windows
existant. De telles opérations dépendent étroitement des ca-
ractéristiques du matériel et de la distribution Linux utilisés,
de ce fait les indications données ici ne peuvent avoir valeur
de mode d’emploi à suivre à la lettre, mais plutôt de descrip-
tion des problèmes à résoudre et de pistes à suivre pour y
parvenir.

Avec les BIOS à l’ancienne, la table des partitions stockée dans
le MBR est limitée à quatre partitions. Pour contourner cette limite,
il faut créer une partition dite « étendue » (partition 2 dans la fi-
gure ci-dessous), en quelque sorte une super-partition, à l’intérieur
de laquelle il est possible de créer des partitions supplémentaires.
Nous avons décrit au chapitre 5 p. 133 le processus de prépara-
tion du disque pour une telle configuration, qui correspond à la
partie supérieure de la figure 12.3. Avec UEFI et GPT c’est plus
compliqué, cette complexité est un obstacle sérieux à l’installation
d’un système d’exploitation libre, même si les distributions Linux
récentes facilitent le processus ; le résultat devra être conforme à la
partie inférieure de la figure 12.3.
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Installer Linux tout seul sur un disque

Plaçons-nous dans le cas de vouloir installer un système Linux
sur un disque dur dont toutes les partitions auraient été effacées, au
moyen par exemple du logiciel gparted. Les opérations à effectuer
devront être les suivantes :

1. Créer une clé USB bootable avec le système Linux désiré dont
on aura téléchargé l’image ISO, par exemple Ubuntu pour
fixer les idées. Cela se fait au moyen du logiciel UNetbootin,
disponible sous Windows, MacOS et Linux.

2. Démarrer l’ordinateur à partir de la clé USB.
3. À partir du menu proposé, lancer Ubuntu en mode « essayer

sans installer ».
4. Lancer le logiciel de gestion de partition gparted.
5. Au début du volume créer une partition étiquetée efi, 250

mégaoctets suffisent, type FAT32, avec le drapeau boot (at-
tention, il ne doit y avoir qu’une seule partition efi sur un
disque).

6. Derrière cette partition efi créer une partition non formatée
d’un mégaoctet avec le drapeau bios_grub.

7. Puis créer les partitions Linux habituelles, par exemple pour
une machine personnelle 30 gigaoctets pour la partition racine
/, 4 Go pour la partition de swap, le reste à partager entre
/home et /usr/local. Pour un serveur il faudra une partition
à part suffisamment vaste pour /var, qui reçoit les journaux
d’exploitation et les bases de données.

Il faudra sans doute aussi accéder au menu du BIOS au moyen
d’une pression, pendant le démarrage, sur la touche F2, ou F9, ou
F10, ou Escape, ou Delete, ou Suppr (cela dépend du système),
et une fois ce menu affiché, désactiver l’option Secure Boot 4 si
ce n’est fait. Si la distribution Linux utilisée refuse de s’installer
en mode UEFI, il faudra, toujours dans le BIOS, activer l’option

4 Ou pas : cela dépend de la distribution Linux utilisée, avec Ubuntu Secure
Boot semble accepté. Il faudra de toute façon sans doute faire des essais, en
commençant par les configurations les plus conformes à celle de départ et
en descendant petit à petit vers le BIOS à l’ancienne mode. Les distribu-
tions Linux récentes de la famille Ubuntu semblent s’installer sans grandes
manipulations.

bios_grub
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Launch CSM (CSM = Compatibility Support Module), qui revient
au mode de l’ancien BIOS. Il est impossible d’être plus précis parce
que cela dépend des versions de BIOS ou UEFI, de la distribution
Linux utilisée, etc. Il est possible que certaines opérations énumé-
rées ci-dessus soient effectuées par la procédure d’installation de
Linux. Dans tous les cas de figure, pendant la procédure d’installa-
tion, afin de garder la maîtrise de l’organisation du disque, lorsque
l’on arrivera à l’étape qui demande si l’on veut installer Linux en
écrasant le contenu antérieur du disque, ou si l’on veut l’installer
à côté de ce qui existe déjà, ou faire autre chose, il faut choisir
faire autre chose, qui proposera le choix d’utilisation des partitions
existantes, et éventuellement la création d’autres partitions.

On pourra consulter des éléments complémentaires d’analyse
sur le site d’Éric Buist [24].

Installer Linux à côté d’un Windows existant

Si le disque de l’ordinateur contient un système Windows que
l’on souhaite conserver, il faut commencer par réduire la taille d’une
partition Windows pour récupérer de l’espace pour Linux. Encore
une fois gparted est le logiciel qui convient à cette tâche.

Il faudra peut-être aussi désactiver l’option Secure Boot et ac-
tiver l’option Launch CSM (CSM = Compatibility Support Module,
cf. ci-dessus). Encore une fois ces procédures ne sont pas normalisées
et dépendent des versions des systèmes utilisés. Là aussi, pendant
la procédure d’installation, lorsque l’on arrivera à l’étape qui de-
mande si l’on veut installer Linux en écrasant le contenu antérieur
du disque, ou si l’on veut l’installer à côté de ce qui existe déjà,
ou faire autre chose, il faut choisir faire autre chose, qui proposera
le choix d’utilisation des partitions existantes, et éventuellement la
création d’autres partitions.

Voici un exemple de configuration de disque où cohabitent Linux
et Windows, telle que restituée par le logiciel fdisk :

Disque /dev/sda : 232,9 GiB, 250 059 350 016 octets, 488 397 168 secteurs
Unités : sectors of 1 * 512 = 512 octets
Sector size (logical/physical) : 512 bytes / 512 bytes
I/O size (minimum/optimal) : 512 bytes / 512 bytes
Disklabel type : gpt
Disk identifier : 6A2E11D5-54AB-4C7D-A5E3-7101294F5A3B
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Périphérique Start Fin Secteurs Size Type
/dev/sda1 1716224 1748991 32768 16M Microsoft reserved
/dev/sda2 2875392 3796991 921600 450M Windows recovery
/dev/sda3 4001792 4923391 921600 450M Windows recovery
/dev/sda4 5128192 6049791 921600 450M Windows recovery
/dev/sda5 6049792 6254591 204800 100M EFI System
/dev/sda6 6254592 171670607 165416016 78,9G Microsoft basic data
/dev/sda7 238075904 289929215 51853312 24,7G Linux filesystem
/dev/sda8 289929216 487372575 197443360 94,2G Linux filesystem
/dev/sda9 487372800 488396799 1024000 500M Windows recovery
/dev/sda10 179482624 238075903 58593280 28G Linux filesystem
/dev/sda11 171671552 179482623 7811072 3,7G Swap Linux

Partition table entries are not in disk order.

12.5 La face obscure de l’architecture x86
Intel Management Engine

En octobre 2015 la chercheuse en sécurité informatique Joanna
Rutkowska a publié un article retentissant intitulé Intel x86 consi-
dered harmful [112], qui étudie principalement les mécanismes peu
connus du démarrage du microprocesseur, avant le lancement du
système d’exploitation, et qui fait l’inventaire des failles de sécu-
rité potentielles exploitables par un attaquant. Le résultat est très
impressionnant.

Lors de la mise sous tension d’un ordinateur il faut que lui soit
donnée une information d’amorçage : que faire pour commencer ?
Plus précisément : quelle est l’adresse de la première instruction à
exécuter ? On imagine bien que la modification de cette adresse par
un attaquant pourrait compromettre irrémédiablement tout le fonc-
tionnement ultérieur de quelque logiciel que ce soit, et notamment
de tout système d’exploitation, aussi sûr soit-il.

Plus généralement, tout détournement malveillant d’une étape
du processus d’amorçage peut corrompre toutes les opérations ul-
térieures, parce qu’à ce stade du démarrage aucun dispositif de
protection matériel ou logiciel n’est activé, et qu’ainsi le BIOS (ou
son successeur plus moderne) a accès sans restriction en mode pri-
vilégié à toute la mémoire et à tous les périphériques. Il est par
exemple concevable qu’un BIOS corrompu par un attaquant lance
une version corrompue du système d’exploitation. Cette question du
démarrage est donc cruciale, d’autant plus qu’elle est généralement
mal documentée et mal connue. C’est tout le mérite de Joanna Rut-
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kowska d’avoir appliqué ses capacités d’investigation et de critique
à ce processus, et d’avoir ainsi montré qu’en dépit d’une complexité
considérable ajoutée au cours des dernières années pour en amélio-
rer la sécurité, le système est encore vulnérable. D’où le titre de
l’article.

Depuis 2014, comme nous l’avons déjà signalé ci-dessus, la plu-
part des ordinateurs sont livrés avec un programme de démarrage
dit Unified Extensible Firmware Interface (UEFI), qui est essen-
tiellement un BIOS écrit selon des principes plus modernes que
ses prédécesseurs et doté de fonctions plus étendues, telles que la
possibilité de disques de plus grande capacité avec un plus grand
nombre de partitions. Un inconvénient majeur d’UEFI est la dé-
cision de Microsoft d’imposer aux vendeurs d’ordinateurs certifiés
pour Windows 8 ou 10 l’obligation de livrer leur matériel confi-
guré pour démarrer en mode dit Secure Boot contrôlé par une clé
de chiffrement privée détenue par Microsoft et utilisée pour signer
le noyau du système. Cette situation rend nettement plus difficile
l’installation d’un système d’exploitation libre sur ces machines.

12.5.1 Système d’exploitation souterrain
Multiples sous-systèmes en micro-code

Pour corriger certaines failles de sécurité, les ingénieurs d’Intel
ont multiplié les dispositifs : Trusted Platform Module (TPM), Trus-
ted Execution Technology (TXT), exécution du code SMM (System
Management Mode) sous contrôle d’un hyperviseur, Active Mana-
gement Technology (AMT), Boot Guard, Secure Boot pour UEFI,
et pour couronner l’édifice Intel Management Engine (ME). Il s’agit
en fait de systèmes implantés dans le micrologiciel du processeur,
c’est-à-dire hors de portée de l’utilisateur même muni de tous les
privilèges sur son système. L’article de notre auteure en fait une
analyse approfondie.

Ce qui est à noter, c’est que des systèmes comme AMT et ME
sont actifs en permanence, y compris lorsque l’ordinateur est arrêté
(même lorsque l’ordinateur est hors tension mais branché au sec-
teur, certains éléments restent sous tension, comme en témoigne par
exemple le clignotement du LED du connecteur au réseau Ethernet
RJ45) ! C’est dire à quel niveau de contrôle arrivent ces techniques,
dont la puissance est telle qu’il est à souhaiter qu’elles ne puissent
pas être détournées par des malfaisants.
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Intel Management Engine (ME)

Nous ne traiterons pas ici de tous ces dispositifs, pour lesquels
nous renvoyons à l’article, et nous n’évoquerons que ME (Intel Ma-
nagement Engine), parce que c’est le dernier en date et qu’il englobe
en quelque sorte tous les autres. ME est un petit ordinateur incor-
poré à tous les processeurs Intel contemporains. Il est impossible
de l’enlever ou de le désactiver, et d’ailleurs, à supposer que l’on
trouve un moyen de l’inhiber, le processeur deviendrait pratique-
ment inutilisable parce que beaucoup de ses fonctions dépendent
de ME.

Plus qu’un simple microcontrôleur, ME est une infrastructure
d’accueil complète pour toutes sortes de sous-systèmes, et de fait
AMT est désormais implanté sur ME, ainsi que Boot Guard, PTT
(Platform Trust Technology, la version pour ME de TPM), et
d’autres à venir. ME procure bien sûr un hyperviseur qui permet
par exemple l’exécution de code SMM en bac à sable (pour une
récapitulation de tous ces sigles on pourra se reporter au document
Intel Hardware-based Security Technologies for Intelligent Retail
Devices [64]).

ME partout et pour tout ?

Joanna Rutkowska souligne les effets pervers de cette prise de
contrôle par ME de tous les aspects du fonctionnement du système.

D’abord, imposer à tous les utilisateurs de processeurs Intel
une technologie fermée et opaque en prétendant qu’elle offrirait
un niveau de sécurité inégalable, sans discussion possible, est une
attitude arrogante et peu convaincante sur le fond.

Ensuite, si cette idée s’impose, et il semble que l’on n’ait guère
le choix (AMD développe des technologies comparables sous le nom
Platform Security Processor, PSP), cela conduira à ce qu’elle ap-
pelle la « zombification » des systèmes d’exploitation tels que Win-
dows, Linux, OS-X, etc., réduits au rôle d’interfaces avec l’utilisa-
teur pour balader des fenêtres, réagir aux déplacements de souris
et jouer de la musique, cependant que les véritables traitements de
données seront effectués derrière les portes closes (par des clés de
chiffrement détenues par Intel) de ME, sans que l’utilisateur sache
quels sont les algorithmes utilisés, et avec quel niveau de sécurité.

Comment savoir, par exemple, si Intel n’a pas décidé de confier
le séquestre de ses clés de chiffrement à un tiers de confiance, par
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exemple une agence de sécurité gouvernementale américaine ? ME
pourra-t-il filtrer et analyser nos messages électroniques, nos com-
munications par Skype, nos recherches sur le Web ? Le générateur
de nombres pseudo-aléatoires de ME comporte-t-il des faiblesses,
voulues ou non ? Répondre à de telles questions est déjà difficile
aujourd’hui, mais Joanna Rutkowska attire notre attention sur le
fait qu’avec ME la rétro-ingénierie nécessaire à leur compréhension
et à leur analyse sera d’une difficulté accrue d’un ordre de grandeur.

Et si ME était corrompu ?

C’est la question qu’il faut toujours se poser à propos d’un sys-
tème tout-puissant : tant que ses actions sont bénéfiques tout va
bien 5, mais s’il est détourné vers des actions maléfiques, intention-
nellement ou par suite d’une attaque réussie, alors l’empire du mal
risque d’être absolu.

Or, pour qui voudrait entreprendre une action maléfique, ME
est l’infrastructure idéale, nous dit Joanna Rutkowska : un rootkit
implanté dans ME aurait le contrôle total des traitements effectués
par le système et des données traitées (y compris les clés privées en
transit par la mémoire), et il serait pratiquement indétectable. Que
ce rootkit soit implanté par la mafia ou par la NSA ne change rien
au problème.

12.5.2 Idées pour un système plus sûr
La démarche de Joanna Rutkowska lui permet d’élaborer les

idées qui mènent à un système plus sûr, par exemple :
— utilisation intensive des techniques d’isolation des différents

artefacts fonctionnels les uns par rapport aux autres : vir-
tualisation et bac à sable (sandboxing) en particulier ;

— exécuter en mode non-privilégié tout ce qui peut l’être, et
son article démontre que c’est possible pour presque tout ce
qui a trait aux périphériques, ce qui annulerait les menaces
de type Evil Maid et DMA par exemple.

Joanna Rutkowska ne s’est pas contentée de proférer des idées,
qu’elle réunit sous le vocable compartimentation, elle les a mises en

5 Sous réserve d’un accord unanime pour déterminer ce qui est bénéfique et
ce qui ne l’est pas, et l’on sait que ce n’est vrai que dans l’imagination des
dictateurs totalitaires, c’est même la définition du totalitarisme.
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pratique en organisant le laboratoire The Invisible Things qui a créé
le système d’exploitation Qubes OS [113] fondé sur ces principes.
On remarquera que cette idée de décomposer les systèmes en sous-
systèmes le plus possible indépendants les uns des autres et dotés de
privilèges réglés au minimum rejoint le courant des micro-noyaux,
une technologie un peu oubliée mais dont les qualités de modularité,
de flexibilité et d’aptitude au calcul réparti devraient permettre le
retour au premier plan.

Elle constate avec dépit que de façon générale les industriels
et les éditeurs de systèmes d’exploitation ne suivent pas ces prin-
cipes et continuent à produire des systèmes monolithiques et donc
vulnérables.

Il n’en reste pas moins que même en supposant toutes ces idées
mises en œuvre, la question du démarrage reste entière, parce
qu’elle est entre les mains des industriels qui conçoivent et fa-
briquent processeurs et cartes mères. La multiplication par Intel de
technologies concurrentes ou complémentaires ne fait que compli-
quer la question : Trusted Platform Module (TPM), Trusted Exe-
cution Technology (TXT), exécution du code SMM (System Ma-
nagement Mode) sous contrôle d’un hyperviseur, Boot Guard, Se-
cure Boot pour UEFI, et pour couronner l’édifice Intel Manage-
ment Engine (ME), qui est incorporé de façon irréversible à tous
les processeurs Intel contemporains et qui est un véritable système
d’exploitation implanté en micro-code et qui vit sous le système
d’exploitation que l’utilisateur croit avoir choisi.

Avec Intel Management Engine le vrai système d’exploitation
est dans les entrailles du processeur, et Windows, Linux ou OS-X
ne sont plus que des systèmes de gestion de fenêtres, d’affichage
de vidéo et de diffusion de musique. Ce qui est grave dans tout
cela, c’est que non seulement l’utilisateur (et même le fabricant
d’ordinateur) est privé de toute liberté de choix de son système,
mais qu’en outre le système imposé n’offre pas et ne peut pas offrir
les garanties de sécurité auxquelles il prétend.



Conclusion

Le projet à l’origine de ce livre était de s’adresser à un public
assez large, exposé à l’usage de l’informatique mais peu curieux de
ses arcanes, sans doute souvent agacé par ses défaillances ou ses
mystères, afin d’attirer son attention sur « les enjeux des batailles
politiques qui, en ce moment, font rage », pour reprendre les mots de
la préface que Christian Queinnec a bien voulu lui consacrer. J’en-
visageais de parler aussi peu que possible de technique et d’aboutir
à un texte bref, à la limite du pamphlet. Le lecteur qui aura at-
teint les présentes lignes jugera de l’écart entre la visée initiale et
le résultat.

Parler de technique : aussi peu que possible. Là gît la difficulté.
Décrire les enjeux intellectuels et économiques induits par les sys-
tèmes d’exploitation pour des lecteurs qui en ignorent à peu près
tout sans leur en expliquer les principes aurait été de la cuistre-
rie, pour reprendre la terminologie utilisée par Michel Volle dans
son ouvrage Le métier de statisticien [131] désormais accessible en
ligne où il signale deux écueils qui menacent le spécialiste qui parle
au peuple : pédanterie et cuistrerie. J’ai entrepris une description
des grands principes des systèmes, ce qui n’allait bien sûr pas sans
ceux des ordinateurs et des réseaux, aussi peu que possible, bien
sûr. Je rejoignais ainsi un projet suggéré par Dominique Sabrier,
celui d’un ouvrage destiné à un public curieux mais non spécialiste
des systèmes d’exploitation. Bref, voici un ouvrage d’introduction
engagé : il y a si longtemps que la littérature engagée a disparu que
l’adjectif est libre, on peut le reprendre.

Ai-je été aussi bref que possible ? Je crains que non, le sujet
me plaisait trop. Me semblait possible une évocation historique des
principaux systèmes d’exploitation des origines à nos jours : il est
vite apparu qu’il y aurait fallu le triple de volume, au moins. Ce
pan de l’histoire de l’informatique constitue un champ de recherche
à lui seul, à ma connaissance encore fort peu défriché.
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Le parti-pris de décrire de façon aussi générale que possible
les mécanismes et l’architecture des systèmes en les illustrant
d’exemples empruntés de façon non systématique à telle ou telle
réalisation particulière a engendré un phénomène de sélection dont
le résultat n’est pas indifférent. Cette sélection a bien sûr été biaisée
par mon expérience personnelle : il y a des systèmes passionnants
dont je n’ai eu qu’une connaissance livresque, tels Tenex et Tops-
20 qui animaient les PDP-10 de Digital Equipment, et qui de ce fait
n’apparaissent pas dans ce livre. D’autres, peut-être les meilleurs
d’un certain point de vue, sont si discrets que je les ai utilisés pen-
dant des années sans pratiquement m’apercevoir de leur existence,
comme MacOS ou Pick, et du coup je n’ai pas grand-chose à en
dire, si ce n’est qu’ils m’ont rendu de bons et loyaux services.

Si l’OS 360 et Unix reviennent souvent dans mes exemples c’est
bien sûr dû à une fréquentation plus longue et plus intime de ces
systèmes que de tel ou tel autre, mais pas seulement. J’ai surtout
emprunté à IBM sa gestion de mémoire virtuelle et son traitement
des interruptions parce qu’ils sont d’une sobriété et d’une clarté
conceptuelle parfaites, ce qui n’est pas si répandu. Cette mémoire
virtuelle a été conçue pour être ajoutée à un système existant, ce
qui imposait de réduire les interférences avec les autres composants
au strict minimum et permettait en contre-partie une conception
parfaitement libre du poids du passé : d’où une élégance que l’on
peine à trouver dans la gestion de mémoire d’Unix, il faut le dire. Le
système de fichiers qu’Unix a hérité de Multics atteint par contre
un dépouillement esthétique qui n’est surpassé que par les systèmes
persistants qui ignorent avec hauteur la notion même de fichier. Et
Multics, que je n’ai pratiqué que pendant une courte période, m’a
néanmoins fait découvrir une manière nouvelle en informatique, que
j’ai retrouvée plus tard avec Unix, surtout d’ailleurs sous sa forme
Linux.

Pendant dix ans j’ai travaillé avec le système VMS que Digi-
tal Equipment (DEC) avait créé pour les VAX. J’ai beaucoup aimé
ce système stable et robuste, je l’ai même défendu au-delà du rai-
sonnable, et je me suis demandé pourquoi j’avais si peu parlé de
lui dans ce livre. J’ai eu la réponse en lisant Inside Windows 2000
[123] de Solomon et Russinovich. Windows 2000 et VMS ont le
même concepteur principal, David Cutler, un homme qui sait visi-
blement réaliser des systèmes de grande envergure et très fiables.
Et la description des structures internes de Windows 2000 m’a ir-
résistiblement rappelé le cours VMS que j’avais suivi chez Digital
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quelques années plus tôt : les solutions retenues sont visiblement
raisonnables, quelquefois même un peu trop lorsqu’elle engendrent
une complexité considérable en prévision de cas de figure excep-
tionnels, on se dit qu’il n’y a vraiment aucune chance pour que cela
tombe en panne, mais cela manque de délié, c’est un bloc massif
qui résiste à l’intellection. Peut-être est-ce d’ailleurs le but : pour
un industriel, qu’il soit Digital ou Microsoft, le système est un se-
cret de fabrique et il ne faut pas que les concurrents puissent trop
facilement le contrefaire ou en faire l’ingénierie inverse.

Multics et Unix, pour des raisons longuement développées ci-
dessus et qui tiennent à leur origine universitaire ou proche de
l’Université, ont sans doute mis longtemps à acquérir les qualités
industrielles que VMS et Windows 2000 avaient pratiquement de
naissance, mais leur architecture plus explicite, et pour Unix la plus
grande ouverture de la structure interne, ont permis la naissance
d’une véritable communauté intellectuelle dont tous les bénéfices
apparaissent au grand jour dans le mouvement du logiciel libre.
Ne pas voir les origines lointaines de ce mouvement prive d’y rien
comprendre, comme le montrent à l’envi les élucubrations de la
presse générale ou technique qui mélange allègrement les activités
des développeurs du libre, des pirates du réseau (en jouant sur les
acceptions multiples du terme hacker) et des adolescents adeptes de
jeux électroniques comme s’il ne s’agissait que d’une seule et même
chose. Il ne m’échappe pas que cette confusion peut viser un but,
fût-ce de flatter une clientèle.

Autre chose m’est apparu tandis que j’écrivais ce livre : l’instant
était favorable à une telle entreprise pédagogique parce que nous
sommes dans une période de consolidation et de simplification. Le
paysage technique de l’informatique était sinon plus complexe du
moins plus hétérogène il y a une quinzaine d’années. Les progrès
rapides et implacables de la technologie micro-électronique et des
disques magnétiques ont laminé de nombreuses filières d’innova-
tion dont la rentabilité supposée était trop faible, que ce soit dans
le domaine du matériel (processeurs vectoriels ou systoliques, multi-
processeurs complexes) ou dans celui du logiciel (micro-noyaux, sys-
tèmes d’exploitation distribués). La stagnation des caractéristiques
des processeurs n’est pas pour demain, mais il existe tout un stock
d’innovations aujourd’hui au placard dont beaucoup ressurgiront
sous une forme ou sous une autre. En attendant, la (relative) uni-
fication des techniques de base et la concentration du monde des
systèmes autour de trois ou quatre variétés principales implantées



409

sur trois ou quatre modèles de processeurs ont simplifié la tâche de
l’auteur. Jusqu’à la prochaine flambée innovatrice qui sera déclen-
chée par une percée technologique...

Une chose en tout cas est certaine : l’invasion de domaines de
plus en plus nombreux de notre vie professionnelle et privée par
les systèmes d’exploitation va se poursuivre, et même s’ils sau-
ront se faire de plus en plus discrets, voire transparents, c’est-à-dire
opaques, tout en ignorer sera de plus en plus imprudent.



Annexe A Numération binaire

A.1 Définitions 1

Le premier procédé utilisé par l’humanité pour représenter gra-
phiquement les nombres a sûrement été le système des « bâtons »,
que l’on peut appeler numération unaire. Il est encore en usage
pour marquer les points au ping-pong : pour noter dix-sept points
on trace dix-sept bâtons, regroupés par paquets de cinq pour faci-
liter la lecture. Il n’en reste pas moins que l’encombrement de la
notation est proportionnel à la grandeur du nombre envisagé, ce
qui est vite malcommode.

Le système que nous utilisons communément est appelé numé-
ration de position. Dans la représentation d’un nombre le chiffre
le plus à droite est celui des unités, le second à partir de la droite
celui des dizaines, le troisième celui des centaines, etc. Ainsi :

147 = 7.100 + 4.101 + 1.102 = 7+ 40+ 100

La numération de position a été inventée à Sumer il y a 4 000
ans, mais sa diffusion a été laborieuse. Notre système utilise la base
10, c’est-à-dire que les chiffres successifs à partir de la droite sont
les coefficients des puissances successives de 10, mais tout nombre
supérieur ou égal à 2 serait une base convenable. Les premiers comp-
tables sumériens utilisaient la base 60 : il était logique, alors que la
numération de position était une science de pointe, une acquisition
intellectuelle difficile, d’utiliser une base de valeur élevée, ce qui
permettait pour les usages élémentaires (nombres inférieurs à 60)
de se ramener à l’ancien système, plus accessible.

1 Ce chapitre d’annexe emprunte une partie de son contenu à mon livre Ini-
tiation à la programmation avec Scheme, publié en 2011 par les Éditions
Technip, avec l’aimable autorisation de l’éditeur.
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Les anciens Gaulois utilisaient la base 20 dont nous voyons la
trace dans les termes quatre-vingt et Quinze-Vingt, vieux noms de
nombres celtiques.

La Chine antique utilisait les bases 2, 10 et 12. L’ouvrage clas-
sique de Marcel Granet La pensée chinoise consacre un volumineux
chapitre à l’usage des nombres par les Chinois. Ils maîtrisaient une
arithmétique tout à fait respectable, mais cette discipline était te-
nue en piètre estime par rapport à l’usage noble des nombres : la
divination par la numérologie.

Soit B un entier supérieur ou égal à 2 et N un entier strictement
positif : tout entier p peut être écrit de façon unique sous la forme :

p =

N−1∑
i=0

diB
i

où les di sont des entiers compris entre 0 et B−1. C’est un théorème
dont la démonstration est laissée en exercice au lecteur.

B est appelé la base de notre système de numération,
(d0, d1, ..., dN−1) est appelé décomposition en base B du nombre
p, on la notera (dN−1...d1d0)B, ou lorsqu’il n’y a pas de confusion
possible sur la base utilisée simplement dN−1...d1d0. Les di sont
les chiffres de notre système et il est de bon ton de leur faire cor-
respondre à chacun un symbole spécial. Si B est inférieur à 10 les
chiffres arabes habituels feront l’affaire. N est le nombre de chiffres
de notre nombre p en base B, une donnée importante en informa-
tique. Ainsi le nombre 42 s’écrit en base 10 :

42 = 2× 100 + 4× 101 = (42)10 = 42

et en base 2 :

(42)10 = 0×20+1×21+0×22+1×23+0×24+1×25 = (101010)2

Cela marche aussi bien sûr avec les chiffres après la virgule, qui
sont les coefficients des puissances négatives de la base B dans la
décomposition du nombre.

A.2 Petits exemples binaires
Voyons ce que donne la base 2, qui nous intéresse tout

particulièrement. Énumérons les premiers nombres :
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Notation décimale Notation binaire
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
... ...
15 1111
16 10000
... ...

Il sera commode de se rappeler que 210 = 1024 ≃ 103, 220 ≃ 106,
etc.

Voyons l’addition : 2+ 3 s’écrit donc 10+ 11 et se calcule ainsi,
selon la méthode habituelle :

— un plus zéro donne un et je ne retiens rien ;
— un plus un donne deux, je pose zéro et je retiens un ;
— un plus zéro donne un, le résultat s’écrit 101 et vaut bien

cinq.

A.3 Conversion entre bases quelconques
Il est parfois nécessaire de convertir un nombre p écrit dans la

base B vers la base B ′. La méthode, laborieuse, est la suivante :
1. Dans la base de départ B diviser (au sens de la division en-

tière qui donne un quotient et un reste) p par la nouvelle
base B ′. Remarquer que le reste obtenu est forcément infé-
rieur à B ′. Diviser le quotient obtenu à nouveau par B ′, puis
recommencer ainsi de suite jusqu’à l’obtention d’un quotient
nul.

2. Si B ′ > B, convertir tous les restes de B en B ′. Si B ′ < B

c’est inutile. En toute rigueur l’algorithme décrit est récursif,
mais en pratique le nombre de cas à examiner est réduit et
les calculs peuvent se faire de tête.

3. Écrire les restes successifs de droite à gauche : c’est le résultat
cherché, l’écriture de p dans la base B ′.
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Voici quelques exemples. La division est posée comme vous avez
appris à l’école : le dividende est à gauche du trait vertical, le di-
viseur est à droite, le résultat est inscrit sous le dividende, chaque
reste partiel est dans le colonne de droite, et le résultat de la conver-
sion est le nombre constitué des chiffres qui sont les restes, dans
l’ordre inverse de leur obtention, c’est-à-dire du bas vers le haut :

100010 :
1000 2 0
500 2 0
250 2 0
125 2 1
62 2 0
31 2 1
15 2 1
7 2 1
3 2 1
1 2 1



= 11111010002

100010 :
1000 3 1
333 3 0
111 3 0
37 3 1
12 3 0
4 3 1
1 3 1


= 11010013

100010 :
1000 4 0
250 4 2
62 4 2
15 4 3
3 4 3

 = 332204

100010 :
1000 5 0
200 5 0
40 5 0
8 5 3
1 5 1

 = 130005

100010 :
1000 6 4
166 6 4
27 6 3
4 6 4

 = 43446

100010 :
1000 7 6
142 7 2
20 7 6
2 7 2

 = 26267

100010 :
1000 8 0
125 8 5
15 8 7
1 8 1

 = 17508

100010 :
1000 9 1
111 9 3
12 9 3
1 9 1

 = 13319

100010 :
1000 10 0
100 10 0
10 10 0
1 10 1

 = 100010

100010 :
1000 11 10
90 11 2
8 11 8

 = 82A11
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100010 :
1000 12 4
83 12 11
6 12 6

 = 6B412

100010 :
1000 13 12
76 13 11
5 13 5

 = 5BC13

100010 :
1000 14 6

71 14 1
5 14 5

 = 51614

100010 :
1000 15 10
66 15 6
4 15 4

 = 46A15

100010 :
1000 16 8

62 16 14
3 16 3

 = 3E816

102410 :
1024 2 0
512 2 0
256 2 0
128 2 0
64 2 0
32 2 0
16 2 0
8 2 0
4 2 0
2 2 0
1 2 1



= 100000000002

102410 :
1024 16 0

64 16 0
4 16 4

 = 40016

656110 :
6561 3 0
2187 3 0
729 3 0
243 3 0
81 3 0
27 3 0
9 3 0
3 3 0
1 3 1


= 1000000003

100000010 :
1000000 111 1

9009 111 18
81 111 81

 = 81.18.1.111
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100000000010 :
1000000000 111 1

9009009 111 27
81162 111 21
731 111 65
6 111 6

 = 6.65.21.27.1.111

100000000010 :
1000000000 7 6
142857142 7 1
20408163 7 6
2915451 7 0
416493 7 0
59499 7 6
8499 7 1
1214 7 3
173 7 5
24 7 3
3 7 3



= 335316006167

C’est un algorithme, il est donc programmable. Pour les chiffres
après la virgule c’est un peu plus compliqué parce qu’il faut prévoir
le cas des nombre dont l’écriture dans la nouvelle base nécessite une
infinité de nombres après la virgule, et alors s’arrêter.

A.4 Représentation informatique des nombres
entiers

Nous allons maintenant dire quelques mots de la façon dont sont
représentés dans la mémoire d’un ordinateur les nombres entiers.

De façon usuelle un entier est stocké dans un mot mémoire.
La taille du mot d’un ordinateur donné détermine donc la valeur
absolue maximum utilisable sur cet ordinateur, ce qui nous rappelle
qu’en informatique nous sommes contraints de demeurer dans un
univers fini. Une machine à mots de 32 bits autorisera des entiers
compris entre −2 147 483 648 et +2 147 483 647.

Principe de représentation
La représentation des nombres est en général caractéristique

de l’architecture d’un ordinateur donné, et non pas du langage de
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programmation utilisé. Les lignes qui suivent décrivent la repré-
sentation des nombres entiers en « virgule fixe » et valent pour la
plupart des ordinateurs contemporains et la plupart des langages
de programmation.

Si la représentation des entiers positifs se fait selon la notation
de position usuelle et n’appelle pas de remarques particulières, celle
des nombres négatifs se fait par la méthode du « complément à la
base », qui appelle une description. Cette dernière méthode, plus
complexe au premier abord, simplifie la conception des algorithmes
de calcul comme nous allons le voir.

Représentation physique Nombre représenté
(chaîne de chiffres binaires)

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

Table A.1 – Représentation des entiers

Soit un ordinateur dont l’architecture matérielle met à notre
diposition, pour représenter les entiers, des emplacements de n po-
sitions en base B, B paire. Nous pouvons représenter Bn nombres
différents : nous prenons ceux compris entre −Bn

2
et Bn

2
− 1, ce

qui revient à partager l’espace des représentations disponibles en
deux parties égales, une pour les nombres négatifs et une pour les
nombres positifs. Le plus grand nombre positif représentable a une
valeur absolue plus faible de 1 que celle du plus petit nombre néga-
tif représentable, parce que 0 est « avec » les nombres positifs. La
représentation se fera comme suit :
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— Les nombres compris entre 0 et Bn

2
− 1, soit Bn

2
nombres,

seront représentés selon la notation usuelle de position ; re-
marquons que le chiffre de poids fort (rang n) est toujours
0 pour ces nombres.

— Pour représenter au moyen des combinaisons restantes les
Bn

2
nombres compris entre −Bn

2
et −1 nous leur ferons cor-

respondre, dans cet ordre, les nombres à n chiffres binaires
compris entre Bn

2
et Bn− 1. Cela revient à dire que le chiffre

de poids fort (rang n) est toujours égal à 1 et qu’un nombre
négatif −p sera représenté par le nombre obtenu en rempla-
çant chacun des chiffres de p par son complément à 1 (c’est-à
dire en remplaçant chaque 1 par un 0 et chaque 0 par un 1)
et en additionnant 1 au résultat, ce que l’on appelle le com-
plément à 2.

— Prenons un exemple avec comme base B = 2 et n = 4 chiffres
possibles. Les entiers représentés seront tels que décrits dans
la table A.1. Le nombre +5 est représenté par les chiffres
suivants : 0101. Le complément à 1 de cette combinaison
de chiffres nous donne : 1010. Additionnons 1 pour avoir le
complément à 2 : 1011, qui représente −5. Si nous addition-
nons les deux nombres en abandonnant la dernière retenue
(puisque nous n’avons que 4 chiffres par nombre) :

0101
+ 1011
= 0000
ce qui est conforme à notre attente.

L’intérêt de cette notation réside dans le fait que l’addition peut
se faire selon le même algorithme, quel que soit le signe des opé-
randes, il suffira « d’oublier » la retenue éventuelle qui donnerait
un n + 1ième chiffre. Évidemment, si le calcul excède la capacité
physique de la représentation, il y aura une erreur.

A.4.1 Notation hexadécimale
La représentation des nombres en base 2 est très commode pour

les ordinateurs mais moins pour les humains, parce qu’elle est en-
combrante et peu lisible. La conversion entre base 2 et base 10 est
laborieuse. Mais la conversion entre la base 2 et une base puissance
de 2 est beaucoup plus maniable. La règle des faisceaux (que nous
ne démontrerons pas ici) nous apprend que chaque groupe de n

chiffres d’un nombre binaire correspond à un chiffre de ce nombre
converti en base 2n. Les valeurs de n souvent utilisées sont 3 et 4,
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soient les notations octale et hexadécimale. Les chiffres de la no-
tation octale sont les chiffres arabes de 0 à 7, ceux de la notation
hexadécimale les chiffres arabes de 0 à 9 et les lettres majuscules
de A à F qui notent respectivement les nombres 10 à 15.

Ainsi le nombre binaire :

0111 1111 0011 1000

soit en décimal 32 568, s’écrit-il en hexadécimal :

7F 38

On notera qu’un octet correspond à un nombre compris entre
0 et 255, représenté en hexadécimal par deux chiffres. Ce mode de
représentation est très utilisé par les informaticiens.

A.5 Types fractionnaires
A.5.1 Les « réels »

Ces types usurpent volontiers le qualificatif « réel », et corres-
pondent aux nombres en virgule flottante de l’ordinateur utilisé,
dont la notice du constructeur et celle de l’auteur du compilateur
comportent une description. Ils servent à représenter les nombres
« avec des chiffres après la virgule ».

La norme IEEE 754 définit deux formats de nombres fraction-
naires que l’on retrouve sur la plupart des ordinateurs. Elle est le
plus généralement implantée physiquement sur l’ordinateur, c’est-
à-dire que les lignes qui suivent ne s’appliquent pas à un langage
particulier, mais à l’utilisation de la plupart des ordinateurs et de
la plupart des langages de programmation.

Un type fractionnaire est défini sur un sous-ensemble borné, in-
complet et fini des rationnels. En effet, le « nombre de chiffres après
la virgule » est limité par la taille physique d’une représentation
concrète. Un tel type peut être utilisé pour représenter approxima-
tivement les nombres réels.

A.5.2 Principe de représentation
Les nombres fractionnaires sont représentés dans les registres

des ordinateurs selon le principe de la virgule flottante. Ce principe
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est inspiré de la notation familière aux scientifiques, qui préfèrent
écrire 197.106 plutôt que 197000000.

Soit un système de numération de base B (entier positif), un
nombre x pourra être représenté par le doublet :

[m,p] tel que : x = m . Bp

m, la mantisse du nombre x, est un nombre positif compris entre :

1 (compris) et B (exclus),

ou nul si x = 0. Ceci correspondrait, en notation décimale usuelle,
à des nombres tels que :

1, 000000000 à 1, 9999999999

Cette mantisse m sera représentée par un nombre fixe de S chiffres
binaires : elle pourra donc prendre 2S valeurs différentes.

L’exposant p sera un entier compris entre deux valeurs MIN et
MAX.

Les quatre entiers B (la base), N (le nombre de chiffres signi-
ficatifs de la mantisse), MIN et MAX (les bornes de l’exposant)
suffisent à définir un système de virgule flottante. Tout nombre réel
de l’intervalle :

] − BMAX,+BMAX[

sera approché par un nombre représentable exactement, c’est-à-dire
de la forme :

x = m . Bp

La norme IEEE 754 définit deux types de nombres en virgule
flottante, en simple ou double précision. Le tableau ci-dessous
donne aussi les caractéristiques de la double précision sur Cray
YMP, qui ne respecte pas la norme.

Simple précision Double précision Cray
(double)

B 2 2 2

MIN −126 −1022 −16382

MAX 127 1023 16383

S 24 53 48

plus petite
valeur absolue 1, 1754944.10−38 2, 225073858507201.10−308

plus grande
valeur absolue 3, 4028235.10+38 1, 797693134862317.10+308
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On remarquera qu’avec des emplacements de même taille phy-
sique pour placer les nombres, Cray privilégie la largeur de l’inter-
valle utilisable (ce que l’on appelle la « dynamique » de la représen-
tation) aux dépens de la précision. D’autre part la représentation
IEEE est dite « normalisée », c’est-à-dire que le premier chiffre de
la mantisse (devant la virgule) est toujours égal à 1 et que l’on peut
donc se dispenser de le stocker, ce qui assure 53 chiffres significatifs
sur 52 bits. La virgule flottante Cray n’est pas normalisée, ce qui
accroît encore la dynamique et diminue la précision.

Voici à titre d’illustration le format physique d’un nombre à la
norme IEEE simple précision : 

bits 31 30 23 22 0

S Exposant Mantisse

Figure A.1 – Format d’un nombre en virgule flottante

S le bit de signe, 0 pour un nombre
positif, 1 pour un nombre négatif ;

Exposant exposant binaire « biaisé », c’est-à-dire
que s’il est représenté sur E chiffres
binaires (E = 8 ici), on ajoute à sa valeur
effective 2E−1, afin de n’avoir à
représenter que des valeurs positives ;

Mantisse une valeur fractionnaire. Un bit à 1 implicite
figure « à gauche » du bit 22. La virgule est à
droite du bit implicite.

En fait, la norme IEE754 est plus complexe que le résumé
que nous en donnons, et elle admet des variantes. Les valeurs
conventionnelles suivantes sont définies, ici en simple précision
(les valeurs des mantisses et des exposants sont les configurations
binaires physiques) :
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Nom Valeur Signe Exposant Mantisse
zéro positif +0 0 0 0

zéro négatif −0 1 0 0

infini positif +∞ 0 255 0

infini négatif −∞ 1 255 0

NaN (not a number) n/a 1 ou 0 255 ̸= 0

A.5.3 Exemple
Un exemple simple emprunté au toujours précieux livre de Ber-

trand Meyer et Claude Baudoin Méthodes de programmation [88]
illustrera quelques aspects intéressants de ce type de représenta-
tion. Soit un système où B = 2, N = 3, MIN = −1 et MAX = 2,
les nombres susceptibles d’être représentés exactement sont les sui-
vants :

p = −1 p = 0 p = +1 p = +2

m = (1, 00)2 = 1 1/2 1 2 4

m = (1, 01)2 = 5/4 5/8 5/4 5/2 5

m = (1, 10)2 = 3/2 3/4 3/2 3 6

m = (1, 11)2 = 7/4 7/8 7/4 7/2 7 

0 2 4 61 3 5 7

Figure A.2 – Axe des nombres représentés

Seules les valeurs positives ont été représentées dans le tableau
et sur le graphique, les valeurs négatives s’en déduiraient par sy-
métrie. On remarquera que la « densité » des nombres représentés
exactement (ou la précision absolue de la représentation) est va-
riable. Le lecteur pourra se convaincre facilement de ce qui suit :

— si l’on représente les nombres réels par un tel ensemble de
nombres, l’opérateur d’égalité n’est pas utilisable (non plus
que l’inégalité d’ailleurs) ; au mieux peut-on vérifier que la
différence entre deux nombres est inférieure à un seuil que
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l’on se donne, et encore à condition de s’assurer que les
chiffres fractionnaires qui produisent la différence sont signi-
ficatifs ; pour un exposé complet et original de la question
on se reportera utilement au livre de Michèle Pichat et Jean
Vignes [101] ;

— la soustraction risque de provoquer une grande perte de pré-
cision dans les calculs (cas de deux nombres « grands » mais
peu différents) ;

— il est dangereux d’additionner ou de soustraire des nombres
d’ordres de grandeur différents, parce qu’une « mise au
même exposant » sera nécessaire, au prix de la précision ;

— des changements de variable judicieux peuvent augmenter la
qualité des résultats ;

— le premier chiffre de la mantisse vaut toujours 1 (on dit que
la virgule flottante est normalisée), il sera donc sous-entendu
dans le matériel.

Pour donner un tour plus concret à cet exposé, nous emprun-
tons au Numerical Computations Guide de Sun Microsystems la
table suivante, qui donne pour la représentation IEEE 754 simple
précision la taille des intervalles entre deux nombres représentés
exactement consécutifs, et ce pour différents ordres de grandeur :

x nextafter Gap

0.0 1.1754944e− 38 1.1754945e− 38

1.0000000e+ 00 1.0000001 1.1920929e− 07

2.0000000e+ 00 2.0000002e.00 2.3841858e− 07

1.6000000e+ 01 1.6000002e+ 01 1.9073486e− 06

1.2800000e+ 02 1.2800002e+ 02 1.5258789e− 05

1.0000000e+ 20 1.0000001e+ 20 8.7960930e+ 12

9.9999997e+ 37 1.0000001e+ 38 1.0141205e+ 31



Annexe B Semi-conducteurs et circuits logiques

B.1 Transistor
Nous avons vu que l’unité centrale de l’ordinateur, et notam-

ment l’unité arithmétique et logique, était constituée de circuits
logiques. Les circuits logiques réalisent matériellement les opéra-
tions de la logique, et à partir de là les opérations arithmétiques
élémentaires. Il suffit pour réaliser les circuits logiques nécessaires
à toutes les opérations d’un dispositif unique, dit semi-conducteur,
qui en fonction d’un courant de commande laisse passer ou bloque
un courant entre une source et un collecteur. C’est ce que nous
allons montrer.

Le premier semi-conducteur fut la triode, inventée en 1906 par
Lee De Forest et utilisée dans la construction de l’ENIAC et des
premiers ordinateurs comme dans celle des anciens postes de radio
« à lampes » et de luxueux amplificateurs, mais nous passerons tout
de suite à son équivalent moderne, le transistor, dont l’invention
aux Bell Laboratories en 1947 vaudra le prix Nobel 1956 à John
Bardeen, Walter Houser Brattain et William Shockley.

Le but des lignes qui suivent n’est pas de donner un cours d’élec-
tronique, mais de donner à comprendre que les opérations élémen-
taires effectuées par les ordinateurs sont des objets physiques, et
pourquoi cela peut fonctionner effectivement. Je n’entreprendrai
pas l’explication des phénomènes physiques en jeu dans le transis-
tor, que toute bonne encyclopédie en ligne ou sur papier révélera
au lecteur, et je me bornerai au modèle donné par la figure B.1, qui
correspond à un transistor bipolaire. Les circuits actuels utilisent
plutôt des transistors à effet de champ, qui autorisent des densités
plus élevées, mais avec des circuits plus complexes, et, répétons-
le, le but de ce chapitre n’est pas un cours d’électronique. Pour
une présentation analogue avec des transistors à effet de champ, on
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pourra par exemple se reporter au site d’Olivier Carton 1. Signalons
aussi la réédition récente de l’ouvrage de Paolo Zanella, Yves Ligier
et Emmanuel Lazard, Architecture et technologie des ordinateurs 2,
aux Éditions Dunod, et la conférence de François Anceau [7] dans
le cadre d’un séminaire au Conservatoire des Arts et Métiers.

Base

EmetteurCollecteur

Figure B.1 – Modèle du transistor bipolaire NPN : quand la base est mise à une
tension positive, le courant passe du collecteur à l’émetteur ; quand la base est

mise à une tension négative ou nulle, le courant ne passe pas.

Quand la base est à une tension positive, le courant passe du
collecteur à l’émetteur ; quand la base est à une tension négative
ou nulle, le courant ne passe pas.

B.2 Algèbre de Boole
Munis du dispositif très simple qu’est le semi-conducteur (qu’il

soit réalisé par une triode ou des relais peu importe), les ingénieurs
des premiers circuits logiques (George Stibitz des Bell Labs en 1937,
l’Allemand Konrad Zuse en 1938, et à plus grande échelle Eckert
et Mauchly pour l’ENIAC) s’attaquèrent aux opérations de l’al-
gèbre de Boole. Le mathématicien britannique George Boole (1815
– 1864) avait imaginé de formaliser la logique d’Aristote au moyen
d’une algèbre d’événements qui depuis porte son nom.

1 http://www.liafa.univ-paris-diderot.fr/~carton/Enseignement/
Architecture/

2 http://www.dunod.com/informatique-multimedia/
fondements-de-linformatique/architectures-des-machines/
ouvrages-denseignemen/architecture-et-tec

http://www.liafa.univ-paris-diderot.fr/~carton/Enseignement/Architecture/
http://www.liafa.univ-paris-diderot.fr/~carton/Enseignement/Architecture/
http://www.dunod.com/informatique-multimedia/fondements-de-linformatique/architectures-des-machines/ouvrages-denseignemen/architecture-et-tec
http://www.dunod.com/informatique-multimedia/fondements-de-linformatique/architectures-des-machines/ouvrages-denseignemen/architecture-et-tec
http://www.dunod.com/informatique-multimedia/fondements-de-linformatique/architectures-des-machines/ouvrages-denseignemen/architecture-et-tec
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Soit un ensemble d’événements A,B,C, .... À chaque événement
correspond une proposition : l’événement considéré a eu lieu. Nous
considérons un ensemble d’événements qui ont entre eux un certain
rapport de contenu, en ceci qu’ils sont liés au résultat d’une seule et
même épreuve. À chaque épreuve est attaché un certain ensemble
de résultats possibles ; de chacun des événements on doit pouvoir
affirmer, pour chaque résultat de l’épreuve, s’il a eu lieu ou non 3.

Si deux événements A et B, pour chaque résultat de l’épreuve,
sont toujours ou tous deux réalisés, ou tous deux non–réalisés, nous
dirons qu’ils sont identiques, ce qui s’écrit A = B.

La non–réalisation d’un événement A est aussi un événement,
qui s’écrira A.

Rényi prend pour épreuve l’exemple du tir sur une cible et pro-
pose de partager la cible en quatre quadrants par un diamètre verti-
cal et un diamètre horizontal. L’événement A sera réalisé si le coup
frappe la moitié supérieure de la cible, l’événement B si le coup
frappe la moitié droite de la cible.
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Événement nul A B AB  (soit : A ET B)

Figure B.2 – Exemples d’événements

Si A et B ont eu lieu tous les deux, il s’agit d’un nouvel évé-
nement, C, qui est justement « A et B ont eu lieu tout les deux »,
qui a lieu si le coup frappe le quadrant supérieur droit de la cible.
C’est le produit de deux événements, que nous noterons A ET B ou
A∧ B ou simplement selon l’élégante notation de Rényi :

C = AB

De même, on peut se demander si au moins un des deux évé-
nements A et B a eu lieu. La proposition « au moins un des deux
événements A et B a eu lieu » est vraie si le coup ne frappe pas le

3 J’emprunte ce résumé de l’algèbre de Boole au Calcul des probabilités du
mathématicien hongrois Alfred Rényi.
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quadrant inférieur gauche de la cible. Cet événement qui se produit
quand au moins un des deux événements A et B a lieu est appelé
la somme de A et B et s’écrit A OU B ou A ∨ B ou simplement :
C = A+ B.
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A + B (A OU B)

Figure B.3 – Ou logique

Nous n’irons guère plus loin en algèbre de Boole. Le lecteur
pourra vérifier les propriétés algébriques du produit et de la
somme, qui sont « bonnes ». Nous pouvons donner les tables de
vérité de ces opérations :

x y xy x+y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
x x

0 1
1 0

B.3 Réalisation des opérations booléennes
Cette section doit beaucoup au livre de Patrick de Miribel Prin-

cipe des ordinateurs[90]. Emmanuel Lazard a réalisé les schémas et
les textes explicatifs qui leur correspondent.

Par convention, le vrai sera représenté par la valeur 1 et le faux
par la valeur 0. À la valeur 1 correspondra un courant positif et à
la valeur 0 un courant nul.
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Les circuits ci-dessous comportent des résistances, symbolisées
par des fils en zigzag, qui comme leur nom l’indique font obstacle
au passage du courant. Si le courant trouve un chemin plus facile,
comme par exemple un transistor à l’état passant, il ne franchira pas
la résistance (plus exactement, le courant qui franchira la résistance
sera faible et inférieur au seuil qui le rendrait efficace). Mais s’il n’y
a pas d’autre chemin, par exemple parce que le transistor est à
l’état bloqué, le courant franchira la résistance.

B.3.1 Circuit NON

x

S = x

+V

collecteur

R

émetteurbase

Figure B.4 – Circuit NON

Si x = 0, la base du transistor est à un potentiel nul, le transistor
est bloqué ; via la résistance, le courant positif va arriver en x, qui
vaudra donc 1, ce qui est bien le contraire de 0.

Si x = 1, le courant positif atteint la base du transistor qui
devient passant. De ce fait, le point x est directement relié à la
masse, donc à une tension nulle et vaudra 0, ce qui est le résultat
voulu.

B.3.2 Circuit OU
Nous avons deux transistors en parallèle : pour que le courant

positif parvienne à la sortie notée x+y et lui confère ainsi la valeur
1, ou le vrai, il suffit que l’un des deux transistors soit passant. Pour
cela il suffit que l’une des deux entrées, x ou y, soit positive : en
effet un courant positif en x par exemple l’emportera sur la mise à
la masse générée par R. C’est bien le résultat attendu.
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x

S = x + y

+V

y

+V

R

Figure B.5 – Circuit OU

y

S = xy

x

+V

R

Figure B.6 – Circuit ET

B.3.3 Circuit ET
Nous avons deux transistors en série : pour que le courant positif

atteigne la sortie notée xy il faut que les deux transistors soient
passants, et donc que les deux entrées x et y soient positives, ce qui
est bien le résultat voulu, conforme à la sémantique du ET.

B.3.4 Complétude de cette réalisation
Il existe d’autres opérations booléennes, mais il est aisé de dé-

montrer qu’elles peuvent toutes se ramener à une composition des
trois opérations que nous venons de voir. Il existe d’autres fa-
çons de réaliser une algèbre de Boole complète, notamment avec la
seule opération NON ET (NAND), souvent utilisée par les circuits
contemporains : plus touffue pour le lecteur humain, elle donne des
résultats strictement équivalents à ceux que nous venons de décrire.
Ce circuit est décrit par la figure B.7.
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x

S = xy

+V

R

y

Figure B.7 – Circuit NON ET (NAND)

Comme les circuits NON OU (NOR) et OU EXCLUSIF (XOR)
sont aussi utiles, notamment pour réaliser la mémoire, les voici dans
les figures B.8 et B.9.

x

S = x + y

+V

y

Figure B.8 – Circuit NON OU (NOR)

NAND

NAND

NAND

x

y

y

x

x XOR y

Figure B.9 – Circuit OU EXCLUSIF (XOR)
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B.4 Construction de l’arithmétique
Munis d’une réalisation électronique de l’algèbre de Boole, nous

allons montrer que nous pouvons réaliser les opérations de l’arith-
métique binaire. En fait, nous allons montrer comment réaliser un
opérateur électronique capable d’additionner deux chiffres binaires
et de donner un chiffre de somme et un chiffre de retenue. En com-
binant plusieurs exemplaires de ce circuit de base il est possible de
construire un additionneur à plusieurs chiffres. L’addition donne
la multiplication et la soustraction, qui donne la division : autant
dire que l’on a tout. Le lecteur peu assuré de sa connaissance de
l’arithmétique binaire pourra se reporter à la section A.2 et plus
généralement à l’annexe A.

Voici la table de vérité du semi-additionneur binaire. Soient s

le chiffre de somme et r la retenue. Leibniz avait déjà remarqué la
conséquence simplificatrice de l’usage de la numération binaire : la
retenue et le chiffre de somme n’ont que deux valeurs possibles, 0
ou 1 4.

x y s r

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

De cette table nous pouvons inférer, par comparaison avec les
tables des opérations logiques ci-dessus :

r = xy

s = (x+ y) · xy

s = (x OU y) ET NON (x ET y)

Opérations que nous pouvons réaliser par le circuit de la figure
B.10.

4 Cf. le texte de Leibniz ici : https://laurentbloch.net/MySpip3/
L-arithmetique-binaire-par-Leibniz-98

https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98
https://laurentbloch.net/MySpip3/L-arithmetique-binaire-par-Leibniz-98
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OU

ET

ET

NON
yx

s

r

Figure B.10 – Semi–additionneur binaire

B.5 Construction de la mémoire
Jusque dans les années 1970 la mémoire était réalisée à partir

d’éléments statiques, le plus souvent des tores de ferrite dont l’orien-
tation du champ magnétique représentait conventionnellement la
valeur d’un bit.

Aujourd’hui la mémoire est réalisée avec des circuits logiques,
le plus souvent des portes NON OU (NOR). Voici la table de vérité
de NON OU, qui comme son nom l’indique donne des résultats
opposés à ceux du OU :

x y x NOR y

0 0 1

0 1 0

1 0 0

1 1 0

Une position de mémoire élémentaire, qui représente un bit, est
obtenue en combinant deux circuits NON OU de telle sorte que la
sortie de l’un alimente l’entrée de l’autre, et réciproquement. Un
tel dispositif est appelé une bascule (latch en anglais), représentée
par la figure B.11.

Selon la table d’opération ci-dessus, la sortie d’une porte
NON OU vaut 1 si toutes ses entrées sont à 0. Selon les tensions
appliquées à ses entrées R (comme reset, remettre le bit à 0) et S

(comme set, allumer le bit à 1), les sorties Q et Q ′ ont les valeurs
indiquées dans la table ci-dessous :
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NOR

NOR

entrée S
(set)

entrée R
(reset)

sortie Q’

sortie Q

Bascule RS

Figure B.11 – Élément de mémoire : bascule statique

S R Q Q ′

1 0 1 0 Set (allumer)
0 0 1 0 Le bit vaut 1
0 1 0 1 Reset (éteindre)
0 0 0 1 Le bit vaut 0
1 1 0 0 État interdit

Le dernier état correspondrait à une situation où l’on deman-
derait au circuit de positionner le bit simultanément à 0 et à 1, ce
qu’il semble raisonnable d’exclure. Q ′ a toujours la valeur complé-
mentaire de celle de Q, soit NON Q, noté Q

Un transistor non alimenté perd son état : un tel circuit doit être
alimenté périodiquement, ce que l’on appelle le rafraîchissement. À
ce détail technique près on observera que les deux états possibles
de ce circuit sont stables, même après le retour à un potentiel nul
des entrées R et S.

On observera que la combinaison de deux objets élémentaires,
ici deux portes NON OU, crée un objet qui excède de beaucoup ses
composants en richesse conceptuelle : une position de mémoire est
un objet beaucoup plus complexe qu’une porte logique, l’algèbre de
Boole ne peut pas en rendre compte.



Annexe C Universitaires et ingénieurs avant et
après Unix

Une controverse intellectuelle tacite

Unix survient une vingtaine d’années après l’invention de l’ordi-
nateur, et une dizaine d’années après que quelques pionniers eurent
compris qu’avec l’informatique une nouvelle science naissait, qu’ils
eurent tenté de la faire reconnaître comme telle, et qu’ils eurent
échoué dans cette tentative. Certains traits d’Unix et certains fac-
teurs de son succès procèdent de cet échec, et c’est de cette histoire
qu’il va être question ici, selon la perception que j’en ai eue de ma
position de praticien. Cette perception me venait de façon rétros-
pective, aussi l’ordre chronologique n’est-il pas toujours respecté
dans cet exposé. Ce qui suit est le récit de l’élaboration d’une vi-
sion personnelle, qui assume sa part de subjectivité.

C.1 Avant l’informatique
Entre 1936 et 1938 à Princeton Alan Turing avait bien

conscience de faire de la science, mais ne soupçonnait pas que ses
travaux de logique seraient un jour considérés comme la fondation
théorique d’une science qui n’existait pas encore, l’informatique.

Dans les couloirs de l’IAS il croisait John von Neumann, par-
fois ils parlaient travail, mais pas du tout de questions de logique,
domaine que von Neumann avait délibérément abandonné après la
publication des travaux de Gödel [36]. En fait, ils étaient tous les
deux mathématiciens, et ils parlaient des zéros de la fonction ζ(s) et
de l’hypothèse de Riemann (RH). Les efforts d’Alonzo Church pour
éveiller l’intérêt de ses collègues pour les travaux sur les fondements
de son disciple Turing (“On computable numbers, with an applica-
tion to the Entscheidungsproblem”) rencontraient peu de succès, la
question apparaissait clairement démodée.
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Ce n’est qu’à la rencontre de Herman Goldstine, et par son en-
tremise des concepteurs de l’ENIAC Eckert et Mauchly, à l’été 1944,
que von Neumann s’intéressa aux calculateurs, et sans le moins du
monde établir un lien entre cet intérêt et les travaux de Turing dont
il avait connaissance. Néanmoins, si Turing avait jeté les bases de
l’informatique, von Neumann allait inventer l’ordinateur.

Samuel Goyet [54] a eu, lors d’une séance du séminaire Codes
sources, une formule frappante et qui me semble exacte : avant von
Neumann, programmer c’était tourner des boutons et brancher des
fiches dans des tableaux de connexion, depuis von Neumann c’est
écrire un texte ; cette révolution ouvrait la voie à la science infor-
matique.

Lors d’une séance précédente du même séminaire, Liesbeth De
Mol [91] avait analysé les textes de von Neumann et d’Adele et Her-
man Goldstine, en montrant que tout en écrivant des programmes,
ils n’avaient qu’une conscience encore imprécise du type d’activité
à laquelle ils s’adonnaient.

C’est donc une douzaine d’années après le First Draft of a Re-
port on the EDVAC [97] que s’est éveillée la conscience de l’arrivée
d’une science nouvelle, et j’en retiendrai comme manifestations les
plus explicites la naissance du langage de programmation Algol,
puis la naissance et la diffusion du système d’exploitation Multics.
Il faudra encore une bonne quinzaine d’années pour que la bonne
nouvelle se répande quelque peu parmi les praticiens de l’informa-
tique, dont l’auteur de ces lignes, d’abord sous les espèces de la
Programmation structurée [38, 9], qui semait l’espoir d’une sortie
du bricolage. Inutile de préciser que l’esprit de bricolage est encore
présent parmi les praticiens.

C.2 Algol et Multics
Algol et Multics sont les cadavres dans le placard d’Unix, même

si les meurtriers ne sont pas clairement identifiés.

C.2.1 Algol
La composition des comités de rédaction des rapports Algol

successifs [10] et la teneur de leurs travaux [99] me semblent mar-
quer un point de non retour dans la constitution de l’informatique
comme science.
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Jusqu’alors la programmation des ordinateurs était considérée
un peu comme un bricolage empirique, qui empruntait sa démarche
à d’autres domaines de connaissance.

Fortran, le premier langage dit évolué, était conçu comme la
transposition la plus conforme possible du formalisme mathéma-
tique, du moins c’était son ambition, déçue comme il se doit 1, et
le caractère effectuant du texte du programme, qui le distingue ra-
dicalement d’une formule mathématique, plutôt que d’être signalé,
était soigneusement dissimulé, notamment par l’emploi du signe =
pour désigner l’opération d’affectation d’une valeur à une variable,
variable au sens informatique du terme, lui aussi distinct radica-
lement de son acception mathématique. La conception même du
langage obscurcissait la signification de ses énoncés, ce que l’on
peut pardonner à John Backus parce qu’il s’aventurait dans un do-
maine jamais exploré avant lui. Mais cette affaire du signe = n’est
pas si anecdotique qu’il y paraît, nous y reviendrons.

De même, Cobol se voulait le plus conforme possible au langage
des comptables, et RPG cherchait à reproduire les habitudes pro-
fessionnelles des mécanographes avec leurs tableaux de connexions.

Algol rompt brutalement avec ces compromis, il condense les
idées de la révolution de la programmation annoncée par Alan Per-
lis [99, p. 75] en tirant toutes les conséquences (telles que perçues à
l’époque) de la mission assignée au texte d’un programme : effectuer
un calcul conforme à l’idée formulée par un algorithme. La syntaxe
du langage ne doit viser qu’à exprimer cette idée avec précision et
clarté, la lisibilité du texte en est une qualité essentielle, pour ce
faire il est composé de mots qui composent des phrases. L’opération
d’affectation := est clairement distinguée du prédicat d’égalité =.

La composition du comité Algol 58 est significative, la plupart
des membres sont des universitaires, l’influence des industriels est

1 Un énoncé mathématique est essentiellement déclaratif, il décrit les pro-
priétés d’une certaine entité, ou les relations entre certaines entités. Un
programme informatique est essentiellement impératif (ou performatif), il
décrit comment faire certaines choses. Il est fondamentalement impossible
de réduire l’un à l’autre, ou vice-versa, ils sont de natures différentes. Il est
par contre possible, dans certains cas, d’établir une relation entre le texte
d’un programme et un énoncé mathématique, c’est le rôle notamment des
systèmes de preuve de programme. Ou, comme l’écrivent Harold Abelson et
Gerald Jay Sussman [2, p. 22], “In mathematics we are usually concerned
with declarative (what is) descriptions, whereas in computer science we are
usually concerned with imperative (how to) descriptions”.
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modérée, Américains et Européens sont à parité (j’ai ajouté au ta-
bleau quelques personnalités influentes qui n’appartenaient pas for-
mellement au comité IAL initial, ou qui ont rejoint ultérieurement
le comité Algol 60, ou qui simplement ont joué un rôle dans cette
histoire) :

Friedrich L. Bauer 1924 Professeur Munich
Hermann Bottenbruch 1928 PhD Ingénieur
Heinz Rutishauser 1918 PhD Professeur ETH
Klaus Samelson 1918 PhD Professeur Munich
John Backus 1924 MS Ingénieur IBM
Alan Perlis 1922 PhD Professeur Yale
Joseph Henry Wegstein 1922 MS NIST
Adriaan van Wijngaarden 1916 U. Amsterdam
Peter Naur 1928 PhD Professeur
Mike Woodger 1923 U. College NPL
Bernard Vauquois 1929 Doctorat Prof. U. Grenoble
Charles Katz 1927 MS U. Penn Ingénieur Univac
Edsger W. Dijkstra 1930 PhD U. of Texas
C. A. R. Hoare 1934 Prof. Oxford
Niklaus Wirth 1934 PhD Professeur ETH
John McCarthy 1927 PhD Prof. Stanford
M.-P. Schützenberger 1920 Doctorat Professeur
Louis Bolliet 1928 Ingénieur IMAG
Jacques Arsac 1929 ENS

Les années de naissance sont significatives : il s’agit de la géné-
ration 1925 (plus ou moins).

S’ils ne figurent pas au sein des comités, Edsger W. Dijkstra
et Jacques Arsac ont contribué (avec Dahl, Hoare et beaucoup
d’autres) à la systématisation de leurs idées sous la forme d’une doc-
trine, la programmation structurée [38], qui a contribué à extraire
ma génération de l’ignorance dans laquelle elle croupissait. Elle est
souvent et abusivement réduite à une idée, le renoncement aux ins-
tructions de branchement explicite (GOTO), promulgué par un ar-
ticle célèbre de Dijkstra [44], Go to Statement Considered Harmful.
Il s’agit plus généralement d’appliquer à la programmation les pré-
ceptes du Discours de la Méthode, de découper les gros programmes
compliqués en petits programmes plus simples, et ainsi d’éviter la
programmation en « plat de spaghettis », illisible et donc impossible
à maintenir.

Rien n’exprime mieux l’aspiration de cette époque à la création
d’une science nouvelle que le livre de Dijkstra A Discipline of Pro-
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gramming [46] : l’effort pour exprimer de façon rigoureuse les idées
les plus ardues de la programmation va de pair avec la recherche
d’un formalisme qui ne doive rien aux notations mathématiques.

Pierre-Éric Mounier-Kuhn, dans un article de 2014 [94], narre
le succès initial rencontré dans les années 1960 en France par Algol
60, puis son déclin au cours des années 1970, parallèle à celui connu
en d’autres pays. À la lecture de l’article on peut deviner certaines
causes de cette désaffection : lors de son discours de réception du
Prix Turing 1980, C.A.R. Hoare faisait l’éloge d’Algol W (l’ancêtre
de Pascal) et la critique d’Algol 68, mais les deux avaient som-
bré. L’éclatement en chapelles de la communauté Algol a sûrement
contribué à en écarter les acteurs du monde de l’entreprise, pour
qui la stabilité et la pérennité d’un système informatique est un
critère de choix fondamental.

Les algolistes français, comme beaucoup des premiers informati-
ciens universitaires, étaient souvent des mathématiciens théoriciens
déçus qui n’avaient jamais écrit un seul programme, leur souci de
rigueur axiomatique n’était tempéré par aucun pragmatisme. Ils
auraient voulu être reconnus comme des égaux par les mathéma-
ticiens, mais, souvent peu convaincus eux-mêmes de la valeur de
leur propre discipline, ils ne pouvaient guère qu’échouer, non sans
avoir au passage détourné pour longtemps la discipline informatique
(telle qu’enseignée dans les universités françaises) vers des chemins
de traverse mathématiques où elle n’avait rien à gagner.

Bref, Algol 68 était un beau monument intellectuel, difficile
d’accès, peu apte à séduire constructeurs d’ordinateurs et utilisa-
teurs en entreprise avec des problèmes concrets à résoudre en temps
fini.

C.2.2 Multics, un système intelligent
Multics est à la science des systèmes d’exploitation ce qu’est

Algol à celle des langages de programmation : un échec public, mais
la source d’idées révolutionnaires et toujours d’actualité qui sont
à l’origine d’une science des systèmes d’exploitation. Idées dont
certaines ont d’ailleurs été largement empruntées par les créateurs
d’Unix. Un récit de l’aventure Multics figure ci-dessus, au chapitre
8 p. 272.
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C.2.3 Avenir de Multics
Il n’est paradoxal qu’en apparence de prédire l’avenir de ce sys-

tème disparu. Certaines des idées les plus brillantes de Multics sont
restées inabouties du fait des limites des ordinateurs de l’époque.
Celle qui me tient le plus à cœur consiste à évacuer la notion inutile,
voire nuisible, de fichier, pour ne garder qu’un seul dispositif d’en-
registrement des données, la mémoire (mieux nommée en anglais
storage), dont certains segments seraient pourvus de l’attribut de
persistance [15].

Le fichier est un objet rétif à toute définition conceptuelle consis-
tante, hérité de la mécanographie par les cartes perforées et la puis-
sance d’IBM, mais sans aucune utilité pour un système d’exploita-
tion d’ordinateur moderne. Il n’est que de constater la difficulté
qu’il y a à expliquer à un utilisateur ordinaire pourquoi il doit sau-
vegarder ses documents en cours de création, et pourquoi ce qui
est dans la mémoire est d’une nature différente de ce qui est sur
le disque dur, terminologie qui révèle une solution de continuité
injustifiée.

Les systèmes d’exploitation de demain, je l’espère, n’auront plus
de fichiers, c’est déjà le cas de systèmes à micro-noyaux comme L4.

Pour Unix, tout est fichiers, y compris la mémoire. Cette uni-
fication conceptuelle est un progrès, certes. Les zélotes d’Unix dé-
fendent cette conception de la manière suivante : avec un système
de mémoire virtuelle, la différence entre mémoire et fichier ne serait
pas dans la persistance ou non mais dans le mode d’accès. L’accès à
la mémoire se fait par des addresses, l’accès à un fichier se fait par
un nom le plus souvent reflètant une structure (quasi) arborescente
(le quasi est pour les liens durs Unix qui font que plusieurs che-
mins peuvent désigner la même chose). D’ailleurs les deux visions
peuvent s’échanger. Je répondrais ceci : avec une mémoire segmen-
tée comme celle de Multics, et conforme à ce que permettent les
processeurs actuels, rien n’interdit de donner un nom aux segments
persistants, ce qui permet l’unification évoquée ci-dessus, d’une fa-
çon plus satisfaisante (IMHO).
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C.3 Unix
C.3.1 Les auteurs d’Unix

Que nous apprend Salus, auquel j’emprunte le générique avec
lequel j’ai construit le tableau ci-desous ? Thompson et Ritchie
étaient chercheurs dans une entreprise industrielle. Au fur et à me-
sure de leur apparition, les noms de ceux qui ont fait Unix, parmi
eux Kirk McKusick, Bill Joy, Eric Allman, Keith Bostic, sont tou-
jours accompagnés d’un commentaire de la même veine : ils étaient
étudiants undergraduates ou en cours de PhD, et soudain ils ont dé-
couvert qu’Unix était bien plus passionnant que leurs études. Bref,
les auteurs d’Unix n’ont jamais emprunté ni la voie qui mène les
ingénieurs perspicaces vers les fauteuils de Directeurs Généraux, ni
celle que prennent les bons étudiants vers la tenure track, les chaires
prestigieuses, voire le Nobel.

Ken Thompson 1932 Berkeley, MS 1966 Ingénieur Bell Labs
Dennis Ritchie 1941 Harvard, PhD 1968 Ingénieur Bell Labs
Brian Kernighan 1942 Princeton (PhD) Ingénieur Bell Labs
Stephen Bourne 1944 PhD. Trinity Col. Ingénieur Bell Labs.
Keith Bostic 1959 Ingénieur Berkeley
Joseph Ossanna 1928 BS Wayne State U. Ingénieur Bell Labs
Douglas McIlroy 1932 Cornell, MIT PhD Ingénieur Bell Labs
Kirk McKusick 1954 PhD Berkeley Ingénieur Berkeley
Eric Allman 1955 MS UC Berkeley Ingénieur Berkeley
Bill Joy 1954 MS UC Berkeley Ingénieur Sun
Özalp Babaoğlu 1955 PhD Berkeley Prof. Bologne
John Lions 1937 Doc. Cambridge Ing. Burroughs
Robert Morris 1932 MS Harvard Ingénieur Bell Labs
Mike Lesk PhD. Harvard Ingénieur Bell Labs
Mike Karels BS U. Notre Dame Ingénieur Berkeley

Si l’on compare ce tableau avec celui des concepteurs d’Algol, on
constate une différence de génération (1943 contre 1925), une plus
faible propension à soutenir une thèse de doctorat, le choix de car-
rières d’ingénieur plutôt que d’universitaire, même si ces carrières
se déroulent souvent dans un environnement de type universitaire.
On notera que Joseph Ossanna avait aussi fait partie de l’équipe
qui a réalisé Multics. On notera aussi la disparition des Européens,
présents presque à parité dans le groupe Algol.
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C.3.2 Unix occupe le terrain
Ces épisodes ont influencé tant la pratique informatique que le

milieu social auxquels je participais, en général avec au moins une
décennie de décalage. Cette expérience, renforcée par quelques dé-
cennies de discussions et de controverses avec quantité de collègues,
m’a suggéré une hypothèse : au cours des années 1970, la généra-
tion d’Algol et de Multics a finalement perdu ses batailles, ses idées
n’ont guère convaincu le monde industriel, dominé à l’époque par
IBM et l’ascension des constructeurs japonais et de Digital Equip-
ment. Et la génération Unix a occupé le terrain laissé vacant, par
une stratégie de guérilla (du faible au fort), avec de nouvelles pré-
occupations et de nouveaux objectifs. Pendant ce temps les géants
de l’époque ne voyaient pas venir la vague micro-informatique qui
allait profondément les remettre en cause.

La mission d’un universitaire consiste, entre autres, à faire avan-
cer la connaissance en élucidant des problèmes compliqués par l’éla-
boration de théories et de concepts nouveaux. Les comités Algol et
le groupe Multics ont parfaitement rempli cette mission en produi-
sant des abstractions de nature à généraliser ce qui n’était aupa-
ravant que des collections d’innombrables recettes empiriques, re-
dondantes et contradictoires. L’élégance d’Algol resplendit surtout
dans sa clarté et sa simplicité.

La mission d’un ingénieur consiste en général à procurer des
solutions efficaces à des problèmes opérationnels concrets. Nul ne
peut contester que ce souci d’efficacité ait été au cœur des préoccu-
pations des auteurs d’Unix, parfois un peu trop, pas tant d’ailleurs
pour le système proprement dit que pour son langage d’implémen-
tation, C.

C.3.3 Inélégances du langage C
Certains traits du langage C me sont restés inexplicables jus-

qu’à ce que je suive un cours d’assembleur VAX, descendant de
leur ancêtre commun, l’assembleur PDP11. J’ai compris alors d’où
venaient ces modes d’adressage biscornus et ces syntaxes à coucher
dehors, justifiées certes par la capacité exiguë des mémoires dispo-
nibles à l’époque, mais de nature à décourager l’apprenti. Je préfère
la clarté, mais il est vrai que l’obscurité peut être un moyen de dé-
fense de techniciens soucieux de se mettre à l’abri des critiques.
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Sans trop vouloir entrer dans la sempiternelle querelle des lan-
gages de programmation, je retiendrai deux défauts du langage C,
dus clairement à un souci d’efficacité mal compris : l’emploi du signe
= pour signifier l’opération d’affectation, et l’usage du caractère
NUL pour marquer la fin d’une chaîne de caractères.

À l’époque où nous étions tous débutants, la distinction entre
l’égalité et l’affectation fut une affaire importante. En venant de
Fortran, il est clair que les idées sur la question étaient pour le
moins confuses, et qu’il en résultait des erreurs cocasses ; après avoir
fait de l’assistance aux utilisateurs pour leurs programmes Fortran
je parle d’expérience. L’arrivée d’une distinction syntaxique claire,
avec Algol, Pascal, LSE ou Ada, sans parler de Lisp, permettait de
remettre les choses en place, ce fut une avancée intellectuelle dans
la voie d’une vraie réflexion sur les programmes.

Les auteurs de C en ont jugé autrement : ils notent l’affectation
= et l’égalité ==, avec comme argument le fait qu’en C on écrit plus
souvent des affectations que des égalités, et que cela économise des
frappes. Ça c’est de l’ingénierie de haut niveau ! Dans un article du
bulletin 1024 de la SIF [100], une jeune doctorante explique com-
ment, lors d’une présentation de l’informatique à des collégiens à
l’occasion de la fête de la Science, une collégienne lui a fait observer
que l’expression i = i+1 qu’elle remarquait dans le texte d’un pro-
gramme était fausse. Cette collégienne avait raison, et l’explication
forcément controuvée qu’elle aura reçue l’aura peut-être écartée de
l’informatique, parce qu’elle aura eu l’impression d’une escroquerie
intellectuelle. Sa question montrait qu’elle écoutait et comprenait
ce que lui disaient les professeurs, et là des idées durement acquises
étaient balayées sans raison valable. Évidemment, on me répondra
que la mission des ingénieurs n’est pas l’éducation des masses, mais
ce n’est pas non plus de leur rendre inintelligible ce qui n’est déjà
pas facile.

Pour la critique de l’usage du caractère NUL pour marquer la
fin d’une chaîne de caractères je peux m’appuyer sur un renfort so-
lide, l’article de Poul-Henning Kamp The Most Expensive One-byte
Mistake [67]. Rappelons que ce choix malencontreux (au lieu de re-
présenter une chaîne comme un doublet {longueur, adresse}) est à
l’origine des erreurs de débordement de zone mémoire, encore au-
jourd’hui la faille favorite des pirates informatiques. Poul-Henning
Kamp énumère dans son article les coûts induits par ce choix : coût
des piratages réussis, coût des mesures de sécurité pour s’en pré-
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munir, coût de développement de compilateurs, coût des pertes de
performance imputables aux mesures de sécurité supplémentaires…

C.3.4 Élégance d’Unix
Si le langage C ne manque pas de défauts, il est néanmoins pos-

sible d’écrire des programmes C élégants, et les différentes variantes
du noyau Unix en sont des exemples.

La première édition en français du manuel de système d’Andrew
Tanenbaum [126] comportait le code source intégral de Minix, une
version allégée d’Unix à usage pédagogique, qui devait servir d’ins-
piration initiale à Linus Torvalds pour Linux. Pour le commentaire
du code source de Linux on se reportera avec profit au livre ex-
haustif et d’une grande clarté de Patrick Cegielski [28] (la première
édition reposait sur la version 0.01 du noyau, beaucoup plus sobre et
facile d’accès que la version ultérieure commentée pour la seconde
édition à la demande de l’éditeur).

On trouvera à la fin de cette annexe les codes sources des rou-
tines principales des schedulers de ces systèmes. Le scheduler est
l’élément principal du système d’exploitation, il distribue le temps
de processeur aux différents processus en concurrence pour pouvoir
s’exécuter.

Les codes de ces systèmes sont aujourd’hui facilement dispo-
nibles en ligne, ici [128] et là [129] par exemple. Par souci d’équité
(d’œcuménisme ?) entre les obédiences on n’aura garde d’omettre
BSD [110], ici la version historique 4BSD. Quelques extraits figurent
à la fin du présent texte.

L’élégance d’Unix réside dans la sobriété et la simplicité des
solutions retenues, qui n’ont pas toujours très bien résisté à la né-
cessité de les adapter à des architectures matérielles et logicielles de
plus en plus complexes. Ainsi, la totalité des 500 super-ordinateurs
les plus puissants du monde fonctionnent sous Linux, ce qui im-
plique la capacité de coordonner plusieurs milliers de processeurs,
40 460 pour le chinois Sunway TaihuLight qui tenait la corde en
2016, dont chacun héberge plusieurs centaines de processus : le sche-
duler ultra-concis du noyau Linux v0.01 dont on trouvera le texte
ci-dessous en serait bien incapable.

Autre élégance des versions libres d’Unix (Linux, FreeBSD,
NetBSD, OpenBSD...) : le texte en est disponible, et les paramètres
variables du système sont écrits dans des fichiers de texte lisible,
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ce qui permet à tout un chacun de les lire et d’essayer de les com-
prendre.

Conclusion
Finalement les universitaires orphelins d’Algol et de Multics se

sont convertis en masse à Unix, ce qui assurait son hégémonie sans
partage. La distribution de licences à un coût symbolique pour les
institutions universitaires par les Bell Labs, ainsi que la disponi-
bilité de compilateurs C gratuits, furent pour beaucoup dans ce
ralliement, à une époque (1982) où le compilateur Ada que j’avais
acheté à Digital Equipment, avec les 80% de réduction pour orga-
nisme de recherche, coûtait 500 000 francs.

Unix a permis pendant un temps la constitution d’une vraie
communauté informatique entre universitaires et ingénieurs, ce qui
fut positif. Mon avis est moins positif en ce qui concerne la diffusion
du langage C : pour écrire du C en comprenant ce que l’on fait,
il faut savoir pas mal de choses sur le système d’exploitation et
l’architecture des ordinateurs, savoirs qui ne peuvent s’acquérir que
par l’expérience de la programmation. C n’est donc pas un langage
pour débutants.

Si le langage C est relativement bien adapté à l’écriture de logi-
ciel de bas niveau, typiquement le système d’exploitation, je reste
convaincu que son usage est une torture très contre-productive pour
les biologistes (ce sont ceux que je connais le mieux) et autres pro-
fanes obligés de se battre avec malloc, sizeof, typedef, struct et
autres pointeurs dont ils sont hors d’état de comprendre la nature
et la signification. La conversion à C n’a pas vraiment amélioré la
pratique du calcul scientifique, la mode récente de Python est alors
un bienfait parce qu’au moins ils pourront comprendre (peut-être)
le sens des programmes qu’ils écrivent.
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Annexes : codes sources
Scheduler du noyau Linux v0.01 :

void schedule(void)
{

int i,next,c;
struct task_struct ** p;

/* check alarm , wake up interruptible tasks that have got
a signal */

for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
if (*p) {

if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p)->signal |= (1<<(SIGALRM -1));
(*p)->alarm = 0;

}
if ((*p)->signal && (*p)->state==TASK_INTERRUPTIBLE)

(*p)->state=TASK_RUNNING;
}

/* this is the scheduler proper : */
while (1) {

c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];
while (--i) {

if (!*--p)
continue;

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
c = (*p)->counter, next = i;

}
if (c) break;
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)

if (*p)
(*p)->counter = ((*p)->counter >> 1) +

(*p)->priority;
}
switch_to(next);

Avec l’aide de Patrick Cegielski [28, p. 196] on observe que la
variable c représente la priorité dynamique de la tâche 2 considérée.

2 Dans le contexte de Linux v0.01 tâche est synonyme de processus. Ulté-
rieurement il peut y avoir une certaine confusion entre processus, tâche et
thread, mais il s’agit toujours d’un programme candidat à l’exécution auquel
le scheduler doit décider de donner ou non la main. La valeur de la variable
jiffies est le nombre de tops d’horloge depuis le démarrage du système.
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Le scheduler parcourt la table des tâches, et parmi celles qui sont
dans l’état TASK_RUNNING, c’est-à-dire disponibles pour s’exécuter, il
sélectionne celle qui a la priorité dynamique la plus élevée et lui
donne la main : switch_to(next);

Scheduler de 4BSD (extrait) :

struct thread *
runq_choose(struct runq *rq)
{

struct rqhead *rqh;
struct thread *td;
int pri;

while ((pri = runq_findbit(rq)) != -1) {
rqh = &rq->rq_queues[pri];
td = TAILQ_FIRST(rqh);
KASSERT(td != NULL,

("runq_choose: no thread on busy queue"));
CTR3(KTR_RUNQ,

"runq_choose: pri=%d thread=%p rqh=%p",
pri, td, rqh);

return (td);
}
CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);

return (NULL);
}

Suite page suivante
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Scheduler de Minix (extrait) :

int main(void)
{

/* Main routine of the scheduler . */
message m_in; /* incoming message itself is kept here . */
int call_nr; /* system call number */
int who_e; /* caller 's endpoint */
int result; /* result to system call */
int rv;
int s;

/* SEF local startup . */
sef_local_startup();

if (OK != (s=sys_getmachine(&machine)))
panic("couldn't get machine info: %d", s);

/* Initialize scheduling timers ,
used for running balance_queues */

init_scheduling();

/* This is SCHED 's main loop - get work and do it ,
forever . */

while (TRUE) {
int ipc_status;

/* Wait for the next message , extract useful information
from it . */
if (sef_receive_status(ANY, &m_in, &ipc_status) != OK)

panic("SCHED sef_receive error");
who_e = m_in.m_source; /* who sent the message */
call_nr = m_in.m_type; /* system call number */

Suite page suivante
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Scheduler de Minix (suite) :

/* Check for system notifications , special cases . */
if (is_ipc_notify(ipc_status)) {

switch(who_e) {
case CLOCK:

expire_timers(m_in.NOTIFY_TIMESTAMP);
continue; /* don 't reply */

default :
result = ENOSYS;

}

goto sendreply;
}

switch(call_nr) {
case SCHEDULING_INHERIT:
case SCHEDULING_START:

result = do_start_scheduling(&m_in);
break;

case SCHEDULING_STOP:
result = do_stop_scheduling(&m_in);
break;

case SCHEDULING_SET_NICE:
result = do_nice(&m_in);
break;

case SCHEDULING_NO_QUANTUM:
/* This message was sent from the kernel , don 't reply */

if (IPC_STATUS_FLAGS_TEST(ipc_status ,
IPC_FLG_MSG_FROM_KERNEL)) {
if ((rv = do_noquantum(&m_in)) != (OK)) {

printf("SCHED: Warning, do_noquantum "
"failed with %d\n", rv);

}
continue; /* Don 't reply */

}
else {

printf("SCHED: process %d faked "
"SCHEDULING_NO_QUANTUM message!\n",

who_e);
result = EPERM;

}
break;

default:
result = no_sys(who_e, call_nr);

}

Suite page suivante
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sendreply:
/* Send reply . */
if (result != SUSPEND) {

m_in.m_type = result; /* build reply message */
reply(who_e, &m_in); /* send it away */

}
}
return(OK);

}

/* ===========================================*
* reply *
*=========================================== */

static void reply(endpoint_t who_e, message *m_ptr)
{

int s = send(who_e, m_ptr); /* send the message */
if (OK != s)

printf("SCHED: unable to send reply to %d: %d\n",
who_e, s);

}

/* ============================================*
* sef_local_startup *
*============================================ */

static void sef_local_startup(void)
{

/* No init callbacks for now . */
/* No live update support for now . */
/* No signal callbacks for now . */

/* Let SEF perform startup . */
sef_startup();

}
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