

1/5

TP 2 : Base de données des communes de la France métropolitaine - Les Requêtes simples

 Conversion d'un tableau en table pour une base de données :

 ouvrez avec le tableur Libre Office le tableau de données issu de l'IGN* nommé tab_commune.ods

 enregistrez ce tableau au format texte d'extension .csv** : tab_commune.csv et en veillant à prendre comme

jeu de caractères : Europe occidentale (ISO-8859-1).

*Institut National Géographique / ** csv : comma-separated values : valeurs séparées par des virgules.

 Pour créer la base de données bdd_communes :
 lancez Firefox.

 lancez SQLite Manager à partir du menu Outils de Firefox.

 sélectionner Nouvelle base de données depuis le menu Base de données de SQLite Manager.

 donnez lui le nom bdd_communes puis OK, puis sélectionnez le dossier dans lequel va être créée la base.

 le nom de la nouvelle base de données apparaît en bleu dans la fenêtre de gauche (avec son extension .sqlite).

Rem : cette fenêtre peut être éventuellement cachée si de largeur au minimum ; Ajustez alors sa largeur.

Pour l'instant elle est vide car elle ne contient aucune table : Tables(0)

 sélectionnez Importer depuis le menu Base de données, puis :

- sélectionnez le fichier tab_commune.csv.

- dès la sélection du fichier, un nom de table dans laquelle les données seront importées est défini.

 Ce nom est par défaut identique à celui de la table, conservez-le pour l'instant.

- modifiez le Codage des caractères proposé par défaut et choisir ISO-8859-1

- sous l'onglet CSV, cochez la case : Première rangée contient les noms de colonnes, puis OK.

- un message d'avertissement apparaît, lisez-le, puis OK.

- une nouvelle fenêtre apparaît : pour chaque variable définissez son type (cf. annexe) et prenez comme

 unique clé primaire la colonne "id", puis OK.

- une fois l'importation des données achevée la table est créée. Fermez l'assistant.

 la table tab_communes a été crée. Elle apparaît sous la fenêtre bdd_communes.sqlite : on a Tables(1)

 cliquez sur tab_communes puis sur l'onglet Structure et observez la commande SQL que vous avez générée

par l'intermédiaire de l'assistant de création des tables. On retrouve :

- pour chaque colonne (d'indice Column ID 0 à 17) le nom et le type des données : INTEGER, VARCHAR, FLOAT

- la commande SQL qui a permis de créer la table : CREATE TABLE "tab_communes" ...

- le nombre total d'enregistrements correspondant au nombre de lignes (No. of records)

- la colonne d'indice 0 de nom id qui sert de clé primaire (cette clé permet d'assurer un référencement unique

 de chaque ligne de la table)

 cliquez avec le bouton droit sur le nom de la table tab_communes et choisissez Renommez une table. Prenez

comme nouveau nom communes. Remarquez l'instruction SQL qui permet de renommer la table (ALTER ...)

 cliquez sur l'onglet Parcourir & rechercher pour visualiser le contenu de la table. Vous pouvez parcourir la

table avec les flèches en bas de la page. Le nombre total de lignes (36613) figure également en bas de la page.

 cliquez sur l'onglet Exécuter le SQL puis entrez la commande SQL suivante : SELECT * FROM communes ;

Le contenu de toute la base s'affiche : table de 18 colonnes et 36613 lignes, ainsi que te temps d'exécution de la

requête (tout en bas à droite).

Rem : pour saisir rapidement une instruction SQL, appuyez-vous sur les instructions prédéfinies sous les

onglets Select / Data Manipulation qu'il n'y alors qu'à modifier et compléter.

Remarque :

Les commandes de manipulations des données (Data Manipulation) avec l'effacement, l'insertion, le

remplacement des données peut être fait directement par l'intermédiaire de l'interface proposée sous l'onglet

Parcourir & rechercher en double-cliquant sur les valeurs à modifier (une fenêtre d'édition permettant la

modification des valeurs s'ouvre).

L'intérêt d'utiliser les commandes SQL pour manipuler les données est dont relativement limité. Il en est de

même pour la création (CREATE) et renommage (ALTER) des tables et index ou leur suppression (DROP).

Par contre il n'en est pas de même pour faire des requêtes (interrogation des données selon des critères).

Seule la saisie d'instructions SQL pertinentes permet de créer les requêtes attendues.

2/5

 Répondez à chacune des questions suivantes en formulant puis exécutant une requête SQL adaptée :

 Quelles sont les caractéristiques de la communes qui a pour id 586 ? et son nom seul ?

SELECT * FROM communes WHERE id=586

SELECT nom_comm FROM communes WHERE id=586

 Affichez la liste des noms et du nombre d'habitants des préfectures de France dans l'ordre alphabétique, puis

dans l'ordre inverse.

SELECT nom_comm, population FROM communes WHERE statut="Préfecture" ORDER BY nom_comm

SELECT nom_comm, population FROM communes WHERE statut="Préfecture" GROUP BY nom_comm

pour l'ordre inverse :

SELECT nom_comm, population FROM communes WHERE statut="Préfecture" ORDER BY nom_comm

DESC

Rem : Un clic sur le titre de la colonne permet aussi d'inverser l'ordre.

 Avec GROUP BY : pas de DESC possible, il ne s'agit pas d'un tri mais d'un regroupement !

 Si les 2 clauses sont présentes : GROUP BY doit précéder ORDER BY

 Donnez le nom des sous-préfectures de la région Rhône-Alpes, classées par ordre alphabétique.

SELECT nom_comm FROM communes WHERE statut="Sous-préfecture" AND nom_region="RHONE-

ALPES" ORDER BY nom_comm

 Dressez la liste des régions (la région ne doit apparaître qu'une seule fois).

SELECT DISTINCT nom_region FROM communes ORDER BY nom_region

Rem : DISTINCT : permet d'éliminer les doublons

ou :

SELECT nom_region FROM communes GROUP BY nom_region

 Affichez les 3 communes de la Savoie qui ont la plus grande superficie.

Indication : La clause LIMIT n permet de limiter la requête aux n premiers enregistrements.

Cette clause est à écrire en toute fin de requête : SELECT ... FROM ... LIMIT n

SELECT nom_comm,superficie FROM communes WHERE code_dept=73 ORDER BY superficie DESC

LIMIT 3

 Affichez les 10 communes les plus peuplées dans le département de la Savoie.

SELECT nom_comm,population FROM communes WHERE code_dept=73 ORDER BY population DESC

LIMIT 10

 Afficher les 10 moins peuplées.

SELECT nom_comm,population FROM communes WHERE code_dept=73 ORDER BY population DESC

LIMIT 10

 Affichez le classement des communes entre la 7
ème

 et 27
ème

 position par leur nombre d'habitants.

Indication : L'utilisation combinée des clauses LIMIT n et OFFSET m permet de limiter la requête aux n

premiers enregistrements mais comptés à partir de l'enregistrement m.

Ces clauses sont à écrire en toute fin de requête : SELECT ... FROM ... LIMIT n OFFSET m

SELECT nom_comm,population FROM communes ORDER BY population DESC LIMIT 20 OFFSET 7

 Donnez la liste des communes en France dont le nom contient "gren".

SELECT nom_comm FROM communes WHERE nom_comm LIKE "%gren%"

3/5

 La liste classée par ordre alphabétique des communes de Savoie dont le nom commence par "Saint".

SELECT nom_comm FROM communes WHERE code_dept=73 AND nom_comm LIKE "Saint%" ORDER

BY nom_comm

 Donnez pour tous les départements (selon leur ordre décroissant) le nom des communes classées selon leur

superficie croissante également.

SELECT nom_comm, superficie, nom_dept FROM communes ORDER BY nom_dept, superficie

 Donnez les noms des départements 12 à 18, classés par ordre alphabétique.

SELECT DISTINCT nom_dept, code_dept FROM communes WHERE (12<=code_dept) AND

(18>=code_dept) ORDER BY code_dept

 Donnez la liste des sous-préfectures classées par région et département.

SELECT nom_comm, nom_region, nom_dept FROM communes WHERE statut="Sous-préfecture" ORDER

BY nom_region, nom_dept,nom_comm

ou (mais moins bien !) :

SELECT nom_comm, nom_region, nom_dept FROM communes WHERE statut="Sous-préfecture" GROUP

BY nom_region, nom_dept, nom_comm

Rem 1 : 3 regroupements qui permettent d'obtenir le même résultat que la requête précédente

Rem 2 : ne pas oublier nom_comm dans clause GROUP BY !! sinon le regroupement ne se fait que sur les

régions et départements et on a au plus une sous-préfecture qui s'affiche pour chaque département !

 Comptez les sous préfectures regroupées par région et département.

SELECT nom_region, nom_dept, COUNT(nom_comm) AS nombre_sous_préfecture_dans_le_département

FROM communes WHERE statut="Sous-préfecture" GROUP BY nom_region, nom_dept

 Evaluez et affichez pour les communes de Savoie leur densité de population (nbre d'habitants par km
2
).

SELECT

nom_comm,

population*1000 AS nombre_habitants,

superficie/100 AS superficie_en_km2,

(population*1000)/(superficie/100) AS densite
FROM communes WHERE code_dept=73

ORDER BY densite DESC

4/5

Pour les plus rapides

 Enregistrement du résultat d'une requête et traitement des données :

 Exécutez la requête suivante pour afficher pour chaque région de France leur densité (en habitants/km
2
) :

SELECT nom_region,
SUM(population) AS nombre_hantitants_en_milliers,
0.01*SUM(superficie) AS superficie_en_km2,
1000*SUM(population)/(0.01*SUM(superficie)) AS densite

FROM communes GROUP BY nom_region

 Sélectionnez le résultat de cette requête qui apparaît sous la forme d'un tableau :

- cliquez sur la première ligne du tableau pour la sélectionner

- descendez tout en bas du tableau

- appuyez sur la touche SHIFT 

- cliquez la dernière ligne : tout le tableau est sélectionné

- cliquez enfin avec le bouton droit de la souris sur Copy Row(s) as CSV (MSExcel compatible) pour faire un copié

 Recopiez le contenu vers un tableur (Excel ou Calc de LibreOffice) :

- lancez l'exécution du tableur

- cliquez dans la case A1

- faîtes un collé (on acceptera le jeu de caractères -Unicode- proposé par défaut)

 Vous pouvez consulter un exemple de traitement des données en ouvrant le fichier Calc suivant :
population_par_region.ods

Si vous avec une connaissance suffisante des tableurs, essayez d'obtenir les mêmes graphiques.

Rem : on aurait pu aussi, à partir de l'icône , enregistrer le résultat de la requête dans un fichier CSV.

 Exemples de requêtes sur la base de données en utilisant un script Python :

 copiez le fichier commune.sqlite directement sous la racine du disque dur.

 ouvrez le script requetes_bdd_communes.py

 exécutez le et observez l'affichage du résultat des 4 requêtes (sous la console ou sous la fenêtre graphique)

 saisissez les instructions nécessaires pour exécuter et afficher le résultat d'une requête simple de votre choix.

 Exécutez les requêtes suivantes, pour lister les villes (communes dont la population est supérieure

 à 2000 habitants) de la région Rhône-Alpes, et relevez leur temps d'exécution :

SELECT nom_comm,population,nom_region,code_reg FROM communes

WHERE code_reg=82 AND population>=2
39ms

SELECT nom_comm,population,nom_region,code_reg FROM communes

WHERE population>=2 AND code_reg=82
35ms

SELECT * FROM

(SELECT nom_comm,population,nom_region,code_reg FROM communes)

WHERE code_reg=82 AND population>=2

39ms

SELECT nom_comm,population,nom_region,code_reg

FROM (SELECT * FROM communes WHERE code_reg=82 AND population>=2)
35 ms

Questions :

 l'ordre des termes (autour du AND) du prédicat logique de la clause WHERE a t-il de l'influence sur le temps

d'évaluation de la requête ?

 l'ordre selon que l'on projette puis sélectionne ou l'inverse (sélection puis projection) a t-il de l'influence sur le

temps d'évaluation de la requête ?

5/5

ANNEXE

Nom Type Description

id INTEGER clé primaire unique

code_comm VARCHAR*

Il s'agit du code géographique de la commune permettant d'identifier la

commune dans son département d'appartenance (texte de trois

caractères).

insee_com VARCHAR

Il s'agit d'un numéro de 5 caractères : le code du département suivi du

code géographique de la commune. Pour les DOM, le 3ème caractère

est commun au n° de département et au n° de commune.

nom_comm VARCHAR
Nom de la commune (source INSEE). C'est un texte en majuscules non

accentuées d'au plus 50 caractères.

statut VARCHAR

Valeurs possibles :

Capitale d'état / Préfecture de région / Préfecture / Sous-préfecture /

Chef-lieu canton / Commune simple

x_chef_lieu INTEGER
Abscisse du chef-lieu de la commune (en hectomètres)

Rem : plus x est important, plus on est à l'est.

y_chef_lieu INTEGER
Ordonnée du chef-lieu de la commune (en hectomètres).

Rem : plus y est important, plus on est au nord.

x_centroid INTEGER Abscisse du centroïde de la commune (en hectomètres).

y_centroid INTEGER Ordonnée du centroïde de la commune (en hectomètres).

z_moyen INTEGER Altitude moyenne de la commune (en mètres).

superficie INTEGER

Superficie de la commune en hectares. C'est la somme des surfaces des

faces BD CARTO composant la commune (avant allégement

géométrique et suppression des îles et enclaves).

population FLOAT

Chiffre de population sans doubles comptes au dernier recensement, en

milliers d'habitants, à une décimale. Pour Mayotte, ce chiffre provient

du recensement de 1997.

code_cant VARCHAR
Code géographique du canton auquel appartient la commune (texte de

deux caractères).

code_arr VARCHAR

Code géographique de l'arrondissement auquel appartient la commune

(texte d'un caractère). Ce champ est vide pour les communes de

Mayotte : il n'y a pas d'arrondissement dans cette collectivité

départementale

code_dept VARCHAR
Code géographique du département auquel appartient la commune

(texte de deux caractères).

nom_dept VARCHAR
Nom du département auquel appartient la commune. C'est un texte en

majuscules non accentuées d'au plus 30 caractères.

code_reg VARCHAR
Code géographique de la région à laquelle appartient la commune

(texte de deux caractères).

nom_region VARCHAR
Nom de la région à laquelle appartient la commune. C'est un texte en

majuscules non accentuées d'au plus 30 caractères.

* VARCHAR : chaîne de caractères de taille variable et s'adaptant à la longueur du texte

