
Médias interactifs numériques

interaction
Dessine-moi un bouton

Pierre Cubaud

Département d'informatique

CNAM

2

Interaction !

en hommage à Douglas Engelbart

démo

3

- ajouter d'autres tracés
- jouer avec la transparence

4

symétrie

démo

 justifier l'équation
pour la symétrie sur
l'axe x

5

6

Gestion d'évenements

Pour que le code réagisse aux actions de l'utilisateur, il
faut renseigner les fonctions appropriées :

mousePressed()
mouseReleased()
mouseMoved()
mouseDragged()

keyPressed()
keyReleased()

7

Dessine-moi un bouton (radio)

état 1 : non sélectionné, non désigné

état 2 : non sélectionné, désigné

état 3 : sélectionné, désigné

état 4 : non sélectionné, désigné

entrée de zone : "roll over"

clic

sortie de zone

8

Détection du rollover :

x x+30
y

y+30

si (mouseX > x) et (mouseX < x+30)

 et (mouseY >y) et (mouseY < y+30)

alors le curseur est dans la boite du bouton

sinon il est dehors

une variable booléenne ("boolean")
pour le rollover + une autre pour la selection

bouton = un carré
en coord (x,y) de largeur
30 pixels

9

démo

10

Suite du code :

essayer d'autres
formes de boutons
et d'autres feedbacks

11

BONUS : approche objet

Comment faire si on veut 2 (ou 100) boutons ???

- 4 paramètres par boutons : x, y, rollover, selected
- lourdeur de la boucle draw()
- test de detection de zone ??

avantage décisif de la programmation "objets"

on va créer une classe Bouton qui regroupe les
traitements de dessin et la gestion des événements
et les paramètres propres à chaque bouton

12

démo

13

Squelette du code de la classe :

class Button {
 /// ici declaration des parametres x,y, selected, rollover

 Button(float Px, float Py, boolean Pselected) {
 x = Px;
 y = Py;
 selected = Pselected;
 }

 void display() {
 /// ici code d'affichage
 }

 void rollover(int mx, int my) {
 /// ici code detection de rollover
 }

 void clic(int mx, int my) {
 //// ici code gestion du booleen selected
 }
}

constructeur pour
les objets Button

les autres
méthodes

14

class Button {
 boolean selected = false;
 boolean rollover = false;
 float x,y;

 Button(float Px, float Py, boolean Pselected) {
 x = Px;
 y = Py;
 selected = Pselected;
 }

 void display() {
 stroke(0);noFill();
 if (rollover) strokeWeight(4);
 else strokeWeight(1);
 rect(x,y,30,30);
 if (selected) {
 noStroke();fill(0);
 rect(x+10,y+10,10,10);
 }
 }

void rollover(int mx, int my) {
 if (mx > x && mx < x + 30 && my > y && my < y + 30)
 rollover = true;
 else
 rollover = false;
 }

 void clic(int mx, int my) {
 if (rollover) selected = ! selected;
 }

}

code complet de la classe

15

Conclusion sur l'exercice :

- le passage aux classes se justifie si on a plusieurs
"objets" de même comportement
- si ce nombre devient grand, il faut inventer en plus des classes
"gestionnaires"
- profiter aussi de la notion d'héritage, qui permet de créer
des objets au comportement proche (non traité dans ce cours)

- il reste à faire que ces boutons servent à quelque-chose
(donc déclenchent des actions)

=> embryon d'une bibliothèque d'interface graphique

