e cham
Meédias interactifs numériques

interaction

Dessine-moi un bouton

Pierre Cubaud
Département d'informatique
CNAM

Interaction ! e cham

_ fn\-;m\“i‘ﬁf"lirﬁ_
A Y e

L=

k-

= o, W
Qe Q% 2N
W= (_(!(((ﬁfi SAN e »

en hommage a Douglas Engelbart

— ¢ cnam

vold setup(O{
517e(400,400) ;

smooth{),
background{®);
noCursor{);
¥ - ajouter d'autres tracés

_ - jouer avec la transparence
vold draw{){

int X = mouseX;

int y = mousey;

ellipse(x,y,20,20);
¥

e cham

symétrie

e cham

vold setup(){

s1ze(600, 600);

smooth(); A

background(200);

F1lL{@);nosStroke();

noCursor{); justifier I'équation
} pour la symétrie sur

1
void draw(){ I"axe x

int x = mouseX;

int y = mousey;
ellipse(x,y,20,20);
ellipse(width-x,y,20,20);

Gestion d'évenements e cham

Pour que le code réagisse aux actions de l'utilisateur, il
faut renseigner les fonctions appropriées :

mousePressed()
mouseReleased()
mouseMoved()
mouseDragged()

keyPressed()
keyReleased()

Dessine-moi un bouton (radio) e cnam

état 1 : non sélectionné, non désigné

3
l entrée de zone : "roll over"
état 2 : non sélectionné, désigné
l clic
m état 3 : sélectionné, désigné
l sortie de zone
_ état 4 : non sélectionné, désigné

Détection du rollover :

bouton = un carré +30

en coord (x,y) de largeur

30 pixels
v+

si (mouseX > x) et (mouseX < x+30)

et (mouseY >y) et (mouseY < y+30)
alors le curseur est dans la boite du bouton
sinon 11 est dehors

—>une variable booléenne ("boolean")
pour le rollover + une autre pour la selection

e cham

e lecham
1Nt X,¥;
boolean rollover, selected;

vold setup() {
s1ze(200,200);
X = 50; y = 50;
rollover = false; selected = false;

}

vold draw() {
background(200);
stroke(@);noF1l1();
1t (rollover) strokeWeight(4); else strokeWeight(l);
rect(x,y,30,30);
1f (selected) {
noStroke();F1l1{@);
rect{x+10,y+10,10,10);

}
N

Suite du code :

vold mouseMoved() {
int mx = mouseX;
int my = mouseY;
1fF (mx > x & mx <« x + 30 & my > y & my < y + 30)

rollover = true;

else
void mousePressed() { essayer d'autres

rollover = false;
if (rollover) formes de boutons

selected = | selected; :
3 et d'autres feedbacks

}

10

e cham

BONUS : approche objet

Comment faire si on veut 2 (ou 100) boutons ???

- 4 parametres par boutons : x, y, rollover, selected
- lourdeur de la boucle draw()
- test de detection de zone ??

—>avantage décisif de la programmation "objets"
on va créer une classe Bouton qui regroupe les
traitements de dessin et la gestion des événements

et les parametres propres a chaque bouton

11

e cham

e cham

Bouton
Button bl,b2;

void setup() {
s1ze(130,21@);
smooth();
bl = new Button(5@,50,false);
b2 = new Button(50,130,true);
}

void draw() {
background(25@);
bl.display();
b2.display();

}

void mouseMoved() {
bl.rollover({mouseX,mouseY);
b2.rollover{mouseX,mouseY);

}

void mousePressed() {
bl.clic(mouseX,mouseY);
b2.clic(mouseX,mouseY);

}

12

13

Squelette du code de la classe :

class Button {
/// ici declaration des parametres x,y, selected, rollover

Button(float Px, float Py, boolean Pselected) {

X=|F;x; constructeur pour
Y=FY; .

selected = Pselected,; — les ObjetS Button

}

void display() {
/// ici code d'affichage

} les autres
void rollover(int mx, int my) { méthodes
/// ici code detection de rollover —

}

void clic(int mx, int my) {
//// ici code gestion du booleen selected

}
}

e cham

code complet de la classe

class Button {
boolean selected = false;
boolean rollover = false;
float x,y;

Button(float Px, float Py, boolean Pselected) {
x = Px;

y =Py;

selected = Pselected;
}
void display() {

stroke(0);nofFill();

if (rollover) strokeWeight(4);

else strokeWeight(1);

rect(x,y,30,30);

if (selected) {
noStroke();fill(0);
rect(x+10,y+10,10,10);

}

}

14

void rollover(int mx, int my) {

}

if (mx > x && mx < x + 30 && my > y && my <y + 30)
rollover = true;

else
rollover = false;

void clic(int mx, int my) {

}

if (rollover) selected = ! selected;

e cham

Conclusion sur l'exercice :

- le passage aux classes se justifie si on a plusieurs

"objets" de méme comportement

- si ce nombre devient grand, il faut inventer en plus des classes
"gestionnaires”

- profiter aussi de |la notion d'héritage, qui permet de créer

des objets au comportement proche (non traité dans ce cours)

- il reste a faire que ces boutons servent a quelque-chose
(donc déclenchent des actions)

=> embryon d'une bibliotheque d'interface graphique

15

e cham

